
Using binomial theorem, evaluate \[{{\left( 102 \right)}^{5}}\].
Answer
522.6k+ views
Hint: In this problem, we have to evaluate the given number with the fifth root. We can first split the given term in the form of \[{{\left( a+b \right)}^{n}}\] We know that the binomial expansion of \[{{\left( a+b \right)}^{n}}\] is \[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{r}}{{a}^{n}}{{b}^{0}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......{{+}^{n}}{{C}_{n}}{{a}^{0}}{{b}^{n}}\]. Here n is the power term. We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] , we can find all the combinations and substitute the value of combination, a and b value to get the answer.
Complete step-by-step answer:
Here we have to evaluate\[{{\left( 102 \right)}^{5}}\] using a binomial theorem.
We can now write the give number in the form \[{{\left( a+b \right)}^{n}}\], we get
\[{{\left( 100+2 \right)}^{5}}\], where a = 100, b = 2 and n = 5.
We know that the binomial expansion is
\[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{r}}{{a}^{n}}{{b}^{0}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......{{+}^{n}}{{C}_{n}}{{a}^{0}}{{b}^{n}}\]
We can now write this expansion with n = 5, we get
\[{{\left( a+b \right)}^{5}}{{=}^{5}}{{C}_{0}}{{a}^{5}}{{b}^{0}}{{+}^{5}}{{C}_{1}}{{a}^{4}}{{b}^{1}}{{+}^{5}}{{C}_{2}}{{a}^{3}}{{b}^{2}}{{+}^{5}}{{C}_{3}}{{a}^{2}}{{b}^{3}}{{+}^{5}}{{C}_{4}}{{a}^{1}}{{b}^{4}}{{+}^{5}}{{C}_{5}}{{a}^{0}}{{b}^{5}}\]…….. (1)
We can find the combination value using the formula \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\], where n = 5 and r = 0
\[{{\Rightarrow }^{5}}{{C}_{0}}=\dfrac{5!}{0!\left( 5-0 \right)!}=\dfrac{5!}{5!}=1\]
When n = 5 and r =1, we get
\[{{\Rightarrow }^{5}}{{C}_{1}}=\dfrac{5!}{1!\left( 5-1 \right)!}=\dfrac{5!}{4!}=5\]
Similarly, for r = 2, 3, 4, 5, we will get the combinations value as
\[\begin{align}
& {{\Rightarrow }^{5}}{{C}_{2}}=\dfrac{5!}{2!\left( 5-2 \right)!}=\dfrac{5!}{2!3!}=10 \\
& {{\Rightarrow }^{5}}{{C}_{3}}=\dfrac{5!}{3!\left( 5-3 \right)!}=\dfrac{5!}{3!2!}=10 \\
& {{\Rightarrow }^{5}}{{C}_{4}}=\dfrac{5!}{4!\left( 5-4 \right)!}=\dfrac{5!}{4!}=5 \\
& {{\Rightarrow }^{5}}{{C}_{5}}=\dfrac{5!}{5!\left( 5-5 \right)!}=\dfrac{5!}{5!}=1 \\
\end{align}\]
We can now substitute the value of a, b, n and the combinations value in (1), we get
\[\Rightarrow {{\left( 100+2 \right)}^{5}}=1{{\left( 100 \right)}^{5}}{{\left( 2 \right)}^{0}}+5{{\left( 100 \right)}^{4}}{{\left( 2 \right)}^{1}}+10{{\left( 100 \right)}^{3}}{{\left( 2 \right)}^{2}}+10{{\left( 100 \right)}^{2}}{{\left( 2 \right)}^{3}}+5{{\left( 100 \right)}^{1}}{{\left( 2 \right)}^{4}}+1{{\left( 2 \right)}^{5}}\]
We can now simplify the above step, we get
\[\Rightarrow {{\left( 100+2 \right)}^{5}}=10000000000+1000000000+40000000+800000+8000+32\]
We can now add the above terms, we get
\[\Rightarrow {{\left( 102 \right)}^{5}}=11040808032\]
Therefore, the value of \[{{\left( 102 \right)}^{5}}=11040808032\]
Note: We should always remember that for large number of digits, the power of the given term can be easily found by using the binomial theorem expansion 0\[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{r}}{{a}^{n}}{{b}^{0}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......{{+}^{n}}{{C}_{n}}{{a}^{0}}{{b}^{n}}\] and we should know to find the value of the combination part using the formula \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Complete step-by-step answer:
Here we have to evaluate\[{{\left( 102 \right)}^{5}}\] using a binomial theorem.
We can now write the give number in the form \[{{\left( a+b \right)}^{n}}\], we get
\[{{\left( 100+2 \right)}^{5}}\], where a = 100, b = 2 and n = 5.
We know that the binomial expansion is
\[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{r}}{{a}^{n}}{{b}^{0}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......{{+}^{n}}{{C}_{n}}{{a}^{0}}{{b}^{n}}\]
We can now write this expansion with n = 5, we get
\[{{\left( a+b \right)}^{5}}{{=}^{5}}{{C}_{0}}{{a}^{5}}{{b}^{0}}{{+}^{5}}{{C}_{1}}{{a}^{4}}{{b}^{1}}{{+}^{5}}{{C}_{2}}{{a}^{3}}{{b}^{2}}{{+}^{5}}{{C}_{3}}{{a}^{2}}{{b}^{3}}{{+}^{5}}{{C}_{4}}{{a}^{1}}{{b}^{4}}{{+}^{5}}{{C}_{5}}{{a}^{0}}{{b}^{5}}\]…….. (1)
We can find the combination value using the formula \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\], where n = 5 and r = 0
\[{{\Rightarrow }^{5}}{{C}_{0}}=\dfrac{5!}{0!\left( 5-0 \right)!}=\dfrac{5!}{5!}=1\]
When n = 5 and r =1, we get
\[{{\Rightarrow }^{5}}{{C}_{1}}=\dfrac{5!}{1!\left( 5-1 \right)!}=\dfrac{5!}{4!}=5\]
Similarly, for r = 2, 3, 4, 5, we will get the combinations value as
\[\begin{align}
& {{\Rightarrow }^{5}}{{C}_{2}}=\dfrac{5!}{2!\left( 5-2 \right)!}=\dfrac{5!}{2!3!}=10 \\
& {{\Rightarrow }^{5}}{{C}_{3}}=\dfrac{5!}{3!\left( 5-3 \right)!}=\dfrac{5!}{3!2!}=10 \\
& {{\Rightarrow }^{5}}{{C}_{4}}=\dfrac{5!}{4!\left( 5-4 \right)!}=\dfrac{5!}{4!}=5 \\
& {{\Rightarrow }^{5}}{{C}_{5}}=\dfrac{5!}{5!\left( 5-5 \right)!}=\dfrac{5!}{5!}=1 \\
\end{align}\]
We can now substitute the value of a, b, n and the combinations value in (1), we get
\[\Rightarrow {{\left( 100+2 \right)}^{5}}=1{{\left( 100 \right)}^{5}}{{\left( 2 \right)}^{0}}+5{{\left( 100 \right)}^{4}}{{\left( 2 \right)}^{1}}+10{{\left( 100 \right)}^{3}}{{\left( 2 \right)}^{2}}+10{{\left( 100 \right)}^{2}}{{\left( 2 \right)}^{3}}+5{{\left( 100 \right)}^{1}}{{\left( 2 \right)}^{4}}+1{{\left( 2 \right)}^{5}}\]
We can now simplify the above step, we get
\[\Rightarrow {{\left( 100+2 \right)}^{5}}=10000000000+1000000000+40000000+800000+8000+32\]
We can now add the above terms, we get
\[\Rightarrow {{\left( 102 \right)}^{5}}=11040808032\]
Therefore, the value of \[{{\left( 102 \right)}^{5}}=11040808032\]
Note: We should always remember that for large number of digits, the power of the given term can be easily found by using the binomial theorem expansion 0\[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{r}}{{a}^{n}}{{b}^{0}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......{{+}^{n}}{{C}_{n}}{{a}^{0}}{{b}^{n}}\] and we should know to find the value of the combination part using the formula \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

