
How do you use the half angle identity to find the exact value of \[\tan 165^\circ \] ?
Answer
558.9k+ views
Hint: Here, in this question, we need to find the exact value of \[\tan 165^\circ \] using the half angle identity. In order to use the half angle identity, we will first rewrite the given value and then simplify in such a way that we get to use half angle identity and find the answer.
Complete step-by-step solution:
The given value is \[\tan 165^\circ \] , we need to find its exact value by using the half angle identity.
First, let \[\tan 165^\circ \] be $t$ …………….... (1)
Now, we will use half angle on \[\tan 165^\circ \] ,
$\Rightarrow$\[\tan 2\left( {165^\circ } \right) = \tan 330^\circ \]
Now, \[\tan 330^\circ \] can also written using \[360^\circ \] by
$\Rightarrow$\[\tan 330^\circ = \tan (360^\circ - 30^\circ )\]
We clearly know a property of $\tan $, i.e., $\tan (\pi - \theta ) = \tan ( - \theta )$ , it becomes
$\Rightarrow$\[\tan 330^\circ = \tan (360^\circ - 30^\circ ) = \tan ( - 30^\circ )\]
There is another property that is $\tan ( - \theta ) = - \tan \theta $ , therefore, \[\tan ( - 30^\circ )\] becomes,
$\Rightarrow$\[\tan ( - 30^\circ ) = - \tan 30^\circ \]
We know that \[\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}\] , therefore we get
$\Rightarrow$\[ - \tan 30^\circ = - \dfrac{1}{{\sqrt 3 }}\]
Hence \[\tan 330^\circ = - \dfrac{1}{{\sqrt 3 }}\] ……………... (2)
Now, using the identity of trigonometric functions,
$\Rightarrow$\[\tan 2t = \dfrac{{2\tan t}}{{1 - {{\tan }^2}t}}\] ,
And now from $(1)$ we have \[\tan 165^\circ = t\]
This implies that $\tan 2t = \tan 330^\circ $ ,
$\Rightarrow$\[\tan 2t = \tan 2(165^\circ ) = \dfrac{{2t}}{{1 - {t^2}}}\]
From $(2)$ we can say that $\tan 2t = \dfrac{1}{{\sqrt 3 }}$ .
Now, putting all this together we get,
$\Rightarrow$$\tan 2(165^\circ ) = \tan 2t = \dfrac{{2t}}{{1 - {\operatorname{t} ^2}}} = \dfrac{1}{{\sqrt 3 }}$
This implies,
$\Rightarrow$$\dfrac{{2t}}{{1 - {\operatorname{t} ^2}}} = \dfrac{1}{{\sqrt 3 }}$
Cross multiplying this, we get,
$\Rightarrow$$2t(\sqrt {3)} = 1 - {t^2}$
Removing the brackets,
$\Rightarrow$$2\sqrt 3 t = 1 - {t^2}$
Forming a quadratic equation by transferring the terms to one side we get,
$\Rightarrow$\[{t^2} - 2\surd 3t - 1 = 0\]
After forming an equation, we can solve that quadratic equation by using the quadratic equation formula:
${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {{{\text{b}}^{\text{2}}}{\text{ - 4ac}}} }}{{{\text{2a}}}}$
The equation is \[{t^2} - 2\surd 3t - 1 = 0\]
Here $a = 1,b = - 2\sqrt 3 ,c = - 1$
Applying in the formula,
$\Rightarrow$$x = \dfrac{{ - ( - 2\sqrt 3 ) \pm \sqrt {{{( - 2\sqrt 3 )}^2} - 4( - 1)(1} )}}{{2(1)}}$
$\Rightarrow$\[x = \dfrac{{2\sqrt 3 \pm \sqrt {12 + 4} }}{2}\]
$\Rightarrow$\[x = \dfrac{{2\sqrt 3 \pm \sqrt {16} }}{2}\]
$\Rightarrow$\[x = \dfrac{{2\sqrt 3 \pm 4}}{2}\]
Now we can split it into two, as the expression involves $ \pm $ in it, one can be plus the other can be minus.
$\Rightarrow$\[x = \dfrac{{2\sqrt 3 + 4}}{2},\dfrac{{2\sqrt 3 - 4}}{2}\]
$\Rightarrow$\[x = \dfrac{{2\left( {\sqrt 3 + 2} \right)}}{2},\dfrac{{2\left( {\sqrt 3 - 2} \right)}}{2}\]
$\Rightarrow$\[x = \sqrt 3 + 2,\sqrt 3 - 2\]
$\Rightarrow$$x = \sqrt 3 + 2,x = \sqrt 3 - 2$
Therefore, the values of $x$ are $\sqrt 3 + 2,\sqrt 3 - 2$ .
Since \[\tan 165^\circ \] , and \[\tan 165{\text{ }} < {\text{ }}0\] , and the answer $\sqrt 3 - 2$ is accepted.
Note: Alternative method:
If the question is silent about the method that should be used, we can solve this \[\tan 165^\circ \] in another easy method.
By using the property of trigonometric functions,
$\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a.\tan b}}$
So here we have\[\tan 165^\circ \] , which can be written as,
$\tan 165^\circ = \tan (180 - 15)^\circ $
Appling in the formula,
$\tan 165^\circ = \tan (180 - 15)^\circ = \dfrac{{\tan 180^\circ - \tan 15^\circ }}{{1 + \tan 180^\circ \tan 15^\circ }}$
$\tan 165^\circ = \dfrac{{0 - 2 - \sqrt 3 }}{{1 + 0.2 - \sqrt 3 }}$
$\tan 165^\circ = \dfrac{{ - 2 + \sqrt 3 }}{1}$
$\begin{gathered}
\tan 165^\circ = - 2 + \sqrt 3 \\
\tan 165^\circ = \sqrt 3 - 2 \\
\end{gathered} $
Therefore, the answer is $\sqrt 3 - 2$.
Complete step-by-step solution:
The given value is \[\tan 165^\circ \] , we need to find its exact value by using the half angle identity.
First, let \[\tan 165^\circ \] be $t$ …………….... (1)
Now, we will use half angle on \[\tan 165^\circ \] ,
$\Rightarrow$\[\tan 2\left( {165^\circ } \right) = \tan 330^\circ \]
Now, \[\tan 330^\circ \] can also written using \[360^\circ \] by
$\Rightarrow$\[\tan 330^\circ = \tan (360^\circ - 30^\circ )\]
We clearly know a property of $\tan $, i.e., $\tan (\pi - \theta ) = \tan ( - \theta )$ , it becomes
$\Rightarrow$\[\tan 330^\circ = \tan (360^\circ - 30^\circ ) = \tan ( - 30^\circ )\]
There is another property that is $\tan ( - \theta ) = - \tan \theta $ , therefore, \[\tan ( - 30^\circ )\] becomes,
$\Rightarrow$\[\tan ( - 30^\circ ) = - \tan 30^\circ \]
We know that \[\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}\] , therefore we get
$\Rightarrow$\[ - \tan 30^\circ = - \dfrac{1}{{\sqrt 3 }}\]
Hence \[\tan 330^\circ = - \dfrac{1}{{\sqrt 3 }}\] ……………... (2)
Now, using the identity of trigonometric functions,
$\Rightarrow$\[\tan 2t = \dfrac{{2\tan t}}{{1 - {{\tan }^2}t}}\] ,
And now from $(1)$ we have \[\tan 165^\circ = t\]
This implies that $\tan 2t = \tan 330^\circ $ ,
$\Rightarrow$\[\tan 2t = \tan 2(165^\circ ) = \dfrac{{2t}}{{1 - {t^2}}}\]
From $(2)$ we can say that $\tan 2t = \dfrac{1}{{\sqrt 3 }}$ .
Now, putting all this together we get,
$\Rightarrow$$\tan 2(165^\circ ) = \tan 2t = \dfrac{{2t}}{{1 - {\operatorname{t} ^2}}} = \dfrac{1}{{\sqrt 3 }}$
This implies,
$\Rightarrow$$\dfrac{{2t}}{{1 - {\operatorname{t} ^2}}} = \dfrac{1}{{\sqrt 3 }}$
Cross multiplying this, we get,
$\Rightarrow$$2t(\sqrt {3)} = 1 - {t^2}$
Removing the brackets,
$\Rightarrow$$2\sqrt 3 t = 1 - {t^2}$
Forming a quadratic equation by transferring the terms to one side we get,
$\Rightarrow$\[{t^2} - 2\surd 3t - 1 = 0\]
After forming an equation, we can solve that quadratic equation by using the quadratic equation formula:
${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {{{\text{b}}^{\text{2}}}{\text{ - 4ac}}} }}{{{\text{2a}}}}$
The equation is \[{t^2} - 2\surd 3t - 1 = 0\]
Here $a = 1,b = - 2\sqrt 3 ,c = - 1$
Applying in the formula,
$\Rightarrow$$x = \dfrac{{ - ( - 2\sqrt 3 ) \pm \sqrt {{{( - 2\sqrt 3 )}^2} - 4( - 1)(1} )}}{{2(1)}}$
$\Rightarrow$\[x = \dfrac{{2\sqrt 3 \pm \sqrt {12 + 4} }}{2}\]
$\Rightarrow$\[x = \dfrac{{2\sqrt 3 \pm \sqrt {16} }}{2}\]
$\Rightarrow$\[x = \dfrac{{2\sqrt 3 \pm 4}}{2}\]
Now we can split it into two, as the expression involves $ \pm $ in it, one can be plus the other can be minus.
$\Rightarrow$\[x = \dfrac{{2\sqrt 3 + 4}}{2},\dfrac{{2\sqrt 3 - 4}}{2}\]
$\Rightarrow$\[x = \dfrac{{2\left( {\sqrt 3 + 2} \right)}}{2},\dfrac{{2\left( {\sqrt 3 - 2} \right)}}{2}\]
$\Rightarrow$\[x = \sqrt 3 + 2,\sqrt 3 - 2\]
$\Rightarrow$$x = \sqrt 3 + 2,x = \sqrt 3 - 2$
Therefore, the values of $x$ are $\sqrt 3 + 2,\sqrt 3 - 2$ .
Since \[\tan 165^\circ \] , and \[\tan 165{\text{ }} < {\text{ }}0\] , and the answer $\sqrt 3 - 2$ is accepted.
Note: Alternative method:
If the question is silent about the method that should be used, we can solve this \[\tan 165^\circ \] in another easy method.
By using the property of trigonometric functions,
$\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a.\tan b}}$
So here we have\[\tan 165^\circ \] , which can be written as,
$\tan 165^\circ = \tan (180 - 15)^\circ $
Appling in the formula,
$\tan 165^\circ = \tan (180 - 15)^\circ = \dfrac{{\tan 180^\circ - \tan 15^\circ }}{{1 + \tan 180^\circ \tan 15^\circ }}$
$\tan 165^\circ = \dfrac{{0 - 2 - \sqrt 3 }}{{1 + 0.2 - \sqrt 3 }}$
$\tan 165^\circ = \dfrac{{ - 2 + \sqrt 3 }}{1}$
$\begin{gathered}
\tan 165^\circ = - 2 + \sqrt 3 \\
\tan 165^\circ = \sqrt 3 - 2 \\
\end{gathered} $
Therefore, the answer is $\sqrt 3 - 2$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

