
How do you use the binomial series to expand ${(2 + x)^{11}}$ ?
Answer
521.4k+ views
Hint: Binomial is a polynomial expression having two terms. We have to expand the given binomial expression raised to the power of $11$. For this purpose we have to use the binomial series expansion formula also known as Binomial Theorem. For $a$ and $b$ given as any term and $n$ given as any positive integer, Binomial theorem states,
\[{\left( {a + b} \right)^n} = \sum\nolimits_{r = 0}^n {{}^n{C_r}{a^{n - r}}{b^r}} \]
Formula Used:
\[
{\left( {a + b} \right)^n} = \sum\nolimits_{r = 0}^n {{}^n{C_r}{a^{n - r}}{b^r}} \\
{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!\; \times r!}} \\
\]
Complete step by step solution:
We have been given an expression ${(2 + x)^{11}}$ which is a binomial expression $(2 + x)$raised to the power $11$. We have to expand this expression using binomial series (or binomial theorem).
The general formula for expansion of a binomial expression raised to some positive integer power is given as,
\[{\left( {a + b} \right)^n} = \sum\nolimits_{r = 0}^n {{}^n{C_r}{a^{n - r}}{b^r}} \]
The expanded series will contain $n + 1$ terms and any ${r^{th}}$ term of the expanded series will be of the form \[{}^n{C_r}{a^{n - r}}{b^r}\].
On comparing with the given expression we can observe that,
$a = 2$, $b = x$ and $n = 11$.
Using the general form of binomial expansion formula we can write the given expression as,
\[{\left( {2 + x} \right)^{11}} = \sum\nolimits_{r = 0}^{11} {{}^{11}{C_r}{2^{11 - r}}{x^r}} \]
Now we have to expand the summation. The value of $r$ varies from $0$ to $11$, and correspondingly each term will vary. We can expand the summation as,
\[
\sum\nolimits_{r = 0}^{11} {{}^{11}{C_r}{2^{n - r}}{x^r}} \\
= {}^{11}{C_0}{2^{11 - 0}}{x^0} + {}^{11}{C_1}{2^{11 - 1}}{x^1} + {}^{11}{C_2}{2^{11 - 2}}{x^2} + {}^{11}{C_3}{2^{11 - 3}}{x^3} \\
+ {}^{11}{C_4}{2^{11 - 4}}{x^4} + {}^{11}{C_5}{2^{11 - 5}}{x^5} + {}^{11}{C_6}{2^{11 - 6}}{x^6} + {}^{11}{C_7}{2^{11 - 7}}{x^7} \\
+ {}^{11}{C_8}{2^{11 - 8}}{x^8} + {}^{11}{C_9}{2^{11 - 9}}{x^9} + {}^{11}{C_{10}}{2^{11 - 10}}{x^{10}} + {}^{11}{C_{11}}{2^{11 - 11}}{x^{11}} \\
\]
We have expanded the given expression using the binomial series expansion.
Now we try to simplify each term. We will use the formula \[{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!\; \times r!}}\].
The expanded series in simplified form becomes,
\[
= \dfrac{{11!}}{{11!\; \times 0!}}{2^{11}} + \dfrac{{11!}}{{10!\; \times 1!}}{2^{10}}x + \dfrac{{11!}}{{9!\; \times 2!}}{2^9}{x^2} + \dfrac{{11!}}{{8!\; \times 3!}}{2^8}{x^3} \\
+ \dfrac{{11!}}{{7!\; \times 4!}}{2^7}{x^4} + \dfrac{{11!}}{{6!\; \times 5!}}{2^6}{x^5} + \dfrac{{11!}}{{5!\; \times 6!}}{2^5}{x^6} + \dfrac{{11!}}{{4!\; \times 7!}}{2^4}{x^7} \\
+ \dfrac{{11!}}{{3!\; \times 8!}}{2^3}{x^8} + \dfrac{{11!}}{{2!\; \times 9!}}{2^2}{x^9} + \dfrac{{11!}}{{1!\; \times 10!}}{2^1}{x^{10}} + \dfrac{{11!}}{{0!\; \times 11!}}{2^0}{x^{11}} \\
= {2^{11}} + 11 \times {2^{10}}x + 55 \times {2^9}{x^2} + 165 \times {2^8}{x^3} + 330 \times {2^7}{x^4} + 462 \times {2^6}{x^5} + 462 \times {2^5}{x^6} + 330 \times {2^4}{x^7} \\
+ 165 \times {2^3}{x^8} + 55 \times {2^2}{x^9} + 11 \times {2^1}{x^{10}} + {x^{11}} \\
= 2048 + 11264x + 28160{x^2} + 42240{x^3} + 42240{x^4} + 29568{x^5} + 14784{x^6} + 5280{x^7} + 1320{x^8} \\
+ 220{x^9} + 22{x^{10}} + {x^{11}} \\
\]
Thus, we get the expanded series as,
\[
{(2 + x)^{11}} = 2048 + 11264x + 28160{x^2} + 42240{x^3} + 42240{x^4} + 29568{x^5} + 14784{x^6} + 5280{x^7} + 1320{x^8} \\
+ 220{x^9} + 22{x^{10}} + {x^{11}} \\
\]
Note: We used the formula for binomial series expansion to find the expanded series of the given expression. The expanded series contains $n + 1$ terms. For negative powers we have to use different formulas for expansion. If not specified in the question we may not have to calculate the exact coefficients of each term as it may be rigorous to multiply such huge numbers.
\[{\left( {a + b} \right)^n} = \sum\nolimits_{r = 0}^n {{}^n{C_r}{a^{n - r}}{b^r}} \]
Formula Used:
\[
{\left( {a + b} \right)^n} = \sum\nolimits_{r = 0}^n {{}^n{C_r}{a^{n - r}}{b^r}} \\
{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!\; \times r!}} \\
\]
Complete step by step solution:
We have been given an expression ${(2 + x)^{11}}$ which is a binomial expression $(2 + x)$raised to the power $11$. We have to expand this expression using binomial series (or binomial theorem).
The general formula for expansion of a binomial expression raised to some positive integer power is given as,
\[{\left( {a + b} \right)^n} = \sum\nolimits_{r = 0}^n {{}^n{C_r}{a^{n - r}}{b^r}} \]
The expanded series will contain $n + 1$ terms and any ${r^{th}}$ term of the expanded series will be of the form \[{}^n{C_r}{a^{n - r}}{b^r}\].
On comparing with the given expression we can observe that,
$a = 2$, $b = x$ and $n = 11$.
Using the general form of binomial expansion formula we can write the given expression as,
\[{\left( {2 + x} \right)^{11}} = \sum\nolimits_{r = 0}^{11} {{}^{11}{C_r}{2^{11 - r}}{x^r}} \]
Now we have to expand the summation. The value of $r$ varies from $0$ to $11$, and correspondingly each term will vary. We can expand the summation as,
\[
\sum\nolimits_{r = 0}^{11} {{}^{11}{C_r}{2^{n - r}}{x^r}} \\
= {}^{11}{C_0}{2^{11 - 0}}{x^0} + {}^{11}{C_1}{2^{11 - 1}}{x^1} + {}^{11}{C_2}{2^{11 - 2}}{x^2} + {}^{11}{C_3}{2^{11 - 3}}{x^3} \\
+ {}^{11}{C_4}{2^{11 - 4}}{x^4} + {}^{11}{C_5}{2^{11 - 5}}{x^5} + {}^{11}{C_6}{2^{11 - 6}}{x^6} + {}^{11}{C_7}{2^{11 - 7}}{x^7} \\
+ {}^{11}{C_8}{2^{11 - 8}}{x^8} + {}^{11}{C_9}{2^{11 - 9}}{x^9} + {}^{11}{C_{10}}{2^{11 - 10}}{x^{10}} + {}^{11}{C_{11}}{2^{11 - 11}}{x^{11}} \\
\]
We have expanded the given expression using the binomial series expansion.
Now we try to simplify each term. We will use the formula \[{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!\; \times r!}}\].
The expanded series in simplified form becomes,
\[
= \dfrac{{11!}}{{11!\; \times 0!}}{2^{11}} + \dfrac{{11!}}{{10!\; \times 1!}}{2^{10}}x + \dfrac{{11!}}{{9!\; \times 2!}}{2^9}{x^2} + \dfrac{{11!}}{{8!\; \times 3!}}{2^8}{x^3} \\
+ \dfrac{{11!}}{{7!\; \times 4!}}{2^7}{x^4} + \dfrac{{11!}}{{6!\; \times 5!}}{2^6}{x^5} + \dfrac{{11!}}{{5!\; \times 6!}}{2^5}{x^6} + \dfrac{{11!}}{{4!\; \times 7!}}{2^4}{x^7} \\
+ \dfrac{{11!}}{{3!\; \times 8!}}{2^3}{x^8} + \dfrac{{11!}}{{2!\; \times 9!}}{2^2}{x^9} + \dfrac{{11!}}{{1!\; \times 10!}}{2^1}{x^{10}} + \dfrac{{11!}}{{0!\; \times 11!}}{2^0}{x^{11}} \\
= {2^{11}} + 11 \times {2^{10}}x + 55 \times {2^9}{x^2} + 165 \times {2^8}{x^3} + 330 \times {2^7}{x^4} + 462 \times {2^6}{x^5} + 462 \times {2^5}{x^6} + 330 \times {2^4}{x^7} \\
+ 165 \times {2^3}{x^8} + 55 \times {2^2}{x^9} + 11 \times {2^1}{x^{10}} + {x^{11}} \\
= 2048 + 11264x + 28160{x^2} + 42240{x^3} + 42240{x^4} + 29568{x^5} + 14784{x^6} + 5280{x^7} + 1320{x^8} \\
+ 220{x^9} + 22{x^{10}} + {x^{11}} \\
\]
Thus, we get the expanded series as,
\[
{(2 + x)^{11}} = 2048 + 11264x + 28160{x^2} + 42240{x^3} + 42240{x^4} + 29568{x^5} + 14784{x^6} + 5280{x^7} + 1320{x^8} \\
+ 220{x^9} + 22{x^{10}} + {x^{11}} \\
\]
Note: We used the formula for binomial series expansion to find the expanded series of the given expression. The expanded series contains $n + 1$ terms. For negative powers we have to use different formulas for expansion. If not specified in the question we may not have to calculate the exact coefficients of each term as it may be rigorous to multiply such huge numbers.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

