
Use integration by parts to derive the reduction formula \[\int {{{\cos }^n}\left( x \right)dx = \dfrac{1}{n}\sin x{{\cos }^{n - 1}}\left( x \right) + \dfrac{{n - 1}}{n}\int {{{\cos }^{n - 2}}\left( x \right)dx} } \] where \[n\] is a positive integer.
And use the previous reduction formula to evaluate \[\int {{{\cos }^3}x{\text{ }}dx} \]
Answer
480.6k+ views
Hint: To solve this question, we will first split \[{\cos ^n}x\] in to two parts as \[{\cos ^{n - 1}}x\] and \[\cos x\] .Then we will apply the formula of integration by parts i.e., \[\int {\left( {uv} \right)dx = u\int {vdx} - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } {\text{ }}dx\] and derive the given result. After that we will substitute \[n = 3\] in the resultant formula to get the value of \[\int {{{\cos }^3}x{\text{ }}dx} \]
Complete answer:
Let us assume, \[I = \int {{{\cos }^n}x{\text{ }}dx} {\text{ }} - - - \left( A \right)\]
Now let’s split \[{\cos ^n}x\] in to two parts as \[{\cos ^{n - 1}}x\] and \[\cos x\]
i.e., \[{\cos ^n}x = {\cos ^{n - 1}}x \cdot \cos x\]
Therefore, we get
\[I = \int {{{\cos }^{n - 1}}x \cdot \cos x{\text{ }}dx} {\text{ }} - - - \left( i \right)\]
Now we know that
\[\int {\left( {uv} \right)dx = u\int {vdx} - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } {\text{ }}dx\]
So, on applying integration by parts in equation \[\left( i \right)\] we get
\[I = {\cos ^{n - 1}}x\int {\cos x{\text{ }}dx} - \int {\left( {\dfrac{d}{{dx}}\left( {{{\cos }^{n - 1}}x} \right)\int {\cos xdx} } \right)} {\text{ }}dx{\text{ }} - - - \left( {ii} \right)\]
Now we know that
\[\int {\cos x{\text{ }}dx = \sin x} \]
\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
Therefore, from equation \[\left( {ii} \right)\] we have
\[I = {\cos ^{n - 1}}x\left( {\sin x} \right) - \int {\left( {n - 1} \right){{\cos }^{n - 2}}x\left( { - \sin x} \right)\sin x{\text{ }}dx} \]
Taking negative sign out from the integral, we get
\[I = {\cos ^{n - 1}}x\left( {\sin x} \right) + \int {\left( {n - 1} \right){{\cos }^{n - 2}}x\left( {\sin x} \right)\sin x{\text{ }}dx} \]
\[\left( {n - 1} \right)\] is a constant term, so we can take it out from the integral
Therefore, we get
\[I = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x\left( {\sin x} \right)\sin x{\text{ }}dx} \]
\[I = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x\left( {{{\sin }^2}x} \right){\text{ }}dx} \]
We know that
\[{\sin ^2}x = 1 - {\cos ^2}x\]
Therefore, we have
\[I = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x\left( {1 - {{\cos }^2}x} \right){\text{ }}dx} \]
On simplifying the integral part, we get
\[I = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x - {{\cos }^n}{\text{x }}dx} \]
\[ \Rightarrow I = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x{\text{ }}dx} - \left( {n - 1} \right)\int {{{\cos }^n}x{\text{ }}dx} \]
Now from equation \[\left( A \right)\] we have \[I = \int {{{\cos }^n}x{\text{ }}dx} \]
Therefore, on substituting the value, we get
\[ \Rightarrow \int {{{\cos }^n}x{\text{ }}dx} = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x{\text{ }}dx} - \left( {n - 1} \right)\int {{{\cos }^n}x{\text{ }}dx} \]
On combining the \[\int {{{\cos }^n}x{\text{ }}dx} \] terms, we get
\[ \Rightarrow \left( {1 + n - 1} \right)\int {{{\cos }^n}x{\text{ }}dx} {\text{ }} = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x{\text{ }}dx} \]
\[ \Rightarrow n\int {{{\cos }^n}x{\text{ }}dx} {\text{ }} = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x{\text{ }}dx} \]
On dividing the above equation by \[n\] we get
\[ \Rightarrow \int {{{\cos }^n}x{\text{ }}dx} {\text{ }} = \dfrac{{{{\cos }^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x{\text{ }}dx} }}{n}\]
\[ \Rightarrow \int {{{\cos }^n}x{\text{ }}dx} {\text{ }} = \dfrac{1}{n}\sin x{\cos ^{n - 1}}x + \dfrac{{n - 1}}{n}\int {{{\cos }^{n - 2}}x{\text{ }}dx} \]
Hence, we get the required result.
Hence, proved
Now we have to evaluate \[\int {{{\cos }^3}x{\text{ }}dx} \]
So, on substituting \[n = 3\] we get
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{1}{3}\sin x{\cos ^{3 - 1}}x + \dfrac{{3 - 1}}{3}\int {{{\cos }^{3 - 2}}x{\text{ }}dx} \]
On simplifying, we get
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{\sin x{{\cos }^2}x}}{3} + \dfrac{2}{3}\int {\cos x{\text{ }}dx} \]
We know that
\[\int {\cos x{\text{ }}dx = \sin x} \]
Therefore, we get
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{\sin x{{\cos }^2}x}}{3} + \dfrac{2}{3}\sin x\]
We know that
\[{\cos ^2}x = 1 - {\sin ^2}x\]
Therefore, we have
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{\sin x\left( {1 - {{\sin }^2}x} \right)}}{3} + \dfrac{2}{3}\sin x\]
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{\sin x - {{\sin }^3}x}}{3} + \dfrac{2}{3}\sin x\]
On taking L.C.M we get
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{\sin x - {{\sin }^3}x + 2\sin x}}{3}\]
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{3\sin x - {{\sin }^3}x}}{3}\]
On dividing by \[3\] we get
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \sin x - \dfrac{{{{\sin }^3}x}}{3}\]
As it is an indefinite integral, so add constant of integration.
Hence, we get the final result as
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \sin x - \dfrac{{{{\sin }^3}x}}{3} + c\]
Note: While solving this question, keep track of each step as the solution involves complex calculations, so there is a high probability of error. Also make sure you know the differentiation and integration of \[\cos x\] as students get confused between the two. The differentiation of \[\cos x\] is \[ - \sin x\] while the integration of \[\cos x\] is \[\sin x\] . So be aware of each and every formula as one mistake can lead you to the wrong answer.
Complete answer:
Let us assume, \[I = \int {{{\cos }^n}x{\text{ }}dx} {\text{ }} - - - \left( A \right)\]
Now let’s split \[{\cos ^n}x\] in to two parts as \[{\cos ^{n - 1}}x\] and \[\cos x\]
i.e., \[{\cos ^n}x = {\cos ^{n - 1}}x \cdot \cos x\]
Therefore, we get
\[I = \int {{{\cos }^{n - 1}}x \cdot \cos x{\text{ }}dx} {\text{ }} - - - \left( i \right)\]
Now we know that
\[\int {\left( {uv} \right)dx = u\int {vdx} - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } {\text{ }}dx\]
So, on applying integration by parts in equation \[\left( i \right)\] we get
\[I = {\cos ^{n - 1}}x\int {\cos x{\text{ }}dx} - \int {\left( {\dfrac{d}{{dx}}\left( {{{\cos }^{n - 1}}x} \right)\int {\cos xdx} } \right)} {\text{ }}dx{\text{ }} - - - \left( {ii} \right)\]
Now we know that
\[\int {\cos x{\text{ }}dx = \sin x} \]
\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
Therefore, from equation \[\left( {ii} \right)\] we have
\[I = {\cos ^{n - 1}}x\left( {\sin x} \right) - \int {\left( {n - 1} \right){{\cos }^{n - 2}}x\left( { - \sin x} \right)\sin x{\text{ }}dx} \]
Taking negative sign out from the integral, we get
\[I = {\cos ^{n - 1}}x\left( {\sin x} \right) + \int {\left( {n - 1} \right){{\cos }^{n - 2}}x\left( {\sin x} \right)\sin x{\text{ }}dx} \]
\[\left( {n - 1} \right)\] is a constant term, so we can take it out from the integral
Therefore, we get
\[I = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x\left( {\sin x} \right)\sin x{\text{ }}dx} \]
\[I = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x\left( {{{\sin }^2}x} \right){\text{ }}dx} \]
We know that
\[{\sin ^2}x = 1 - {\cos ^2}x\]
Therefore, we have
\[I = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x\left( {1 - {{\cos }^2}x} \right){\text{ }}dx} \]
On simplifying the integral part, we get
\[I = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x - {{\cos }^n}{\text{x }}dx} \]
\[ \Rightarrow I = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x{\text{ }}dx} - \left( {n - 1} \right)\int {{{\cos }^n}x{\text{ }}dx} \]
Now from equation \[\left( A \right)\] we have \[I = \int {{{\cos }^n}x{\text{ }}dx} \]
Therefore, on substituting the value, we get
\[ \Rightarrow \int {{{\cos }^n}x{\text{ }}dx} = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x{\text{ }}dx} - \left( {n - 1} \right)\int {{{\cos }^n}x{\text{ }}dx} \]
On combining the \[\int {{{\cos }^n}x{\text{ }}dx} \] terms, we get
\[ \Rightarrow \left( {1 + n - 1} \right)\int {{{\cos }^n}x{\text{ }}dx} {\text{ }} = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x{\text{ }}dx} \]
\[ \Rightarrow n\int {{{\cos }^n}x{\text{ }}dx} {\text{ }} = {\cos ^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x{\text{ }}dx} \]
On dividing the above equation by \[n\] we get
\[ \Rightarrow \int {{{\cos }^n}x{\text{ }}dx} {\text{ }} = \dfrac{{{{\cos }^{n - 1}}x\left( {\sin x} \right) + \left( {n - 1} \right)\int {{{\cos }^{n - 2}}x{\text{ }}dx} }}{n}\]
\[ \Rightarrow \int {{{\cos }^n}x{\text{ }}dx} {\text{ }} = \dfrac{1}{n}\sin x{\cos ^{n - 1}}x + \dfrac{{n - 1}}{n}\int {{{\cos }^{n - 2}}x{\text{ }}dx} \]
Hence, we get the required result.
Hence, proved
Now we have to evaluate \[\int {{{\cos }^3}x{\text{ }}dx} \]
So, on substituting \[n = 3\] we get
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{1}{3}\sin x{\cos ^{3 - 1}}x + \dfrac{{3 - 1}}{3}\int {{{\cos }^{3 - 2}}x{\text{ }}dx} \]
On simplifying, we get
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{\sin x{{\cos }^2}x}}{3} + \dfrac{2}{3}\int {\cos x{\text{ }}dx} \]
We know that
\[\int {\cos x{\text{ }}dx = \sin x} \]
Therefore, we get
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{\sin x{{\cos }^2}x}}{3} + \dfrac{2}{3}\sin x\]
We know that
\[{\cos ^2}x = 1 - {\sin ^2}x\]
Therefore, we have
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{\sin x\left( {1 - {{\sin }^2}x} \right)}}{3} + \dfrac{2}{3}\sin x\]
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{\sin x - {{\sin }^3}x}}{3} + \dfrac{2}{3}\sin x\]
On taking L.C.M we get
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{\sin x - {{\sin }^3}x + 2\sin x}}{3}\]
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \dfrac{{3\sin x - {{\sin }^3}x}}{3}\]
On dividing by \[3\] we get
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \sin x - \dfrac{{{{\sin }^3}x}}{3}\]
As it is an indefinite integral, so add constant of integration.
Hence, we get the final result as
\[ \Rightarrow \int {{{\cos }^3}x{\text{ }}dx} {\text{ }} = \sin x - \dfrac{{{{\sin }^3}x}}{3} + c\]
Note: While solving this question, keep track of each step as the solution involves complex calculations, so there is a high probability of error. Also make sure you know the differentiation and integration of \[\cos x\] as students get confused between the two. The differentiation of \[\cos x\] is \[ - \sin x\] while the integration of \[\cos x\] is \[\sin x\] . So be aware of each and every formula as one mistake can lead you to the wrong answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

