
Use elementary row transformation, find the inverse of the matrix $A = \left[ {\begin{array}{*{20}{c}}
1&2&3 \\
2&5&7 \\
{ - 2}&{ - 4}&{ - 5}
\end{array}} \right]$
Answer
581.7k+ views
Hint: If we have to find ${A^{ - 1}}$ using row operations, write $A = IA$ and apply a sequence of row operations on $A = IA$ till we get, $I = BA$.Then, the matrix $B$ will be the inverse of $A$. Here $I = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$ is the identity matrix.
Complete step-by-step answer:
Write $A = IA$, i.e.,
$\left[ {\begin{array}{*{20}{c}}
1&2&3 \\
2&5&7 \\
{ - 2}&{ - 4}&{ - 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]A$
Applying \[{R_2} \to {R_2} - 2{R_1}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&1&1 \\
{ - 2}&{ - 4}&{ - 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{ - 2}&1&0 \\
0&0&1
\end{array}} \right]A$
Applying \[{R_3} \to {R_3} + 2{R_1}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&1&1 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{ - 2}&1&0 \\
2&0&1
\end{array}} \right]A$
Applying \[{R_1} \to {R_1} - 2{R_2}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&1 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 2}&0 \\
{ - 2}&1&0 \\
2&0&1
\end{array}} \right]A$
Applying \[{R_1} \to {R_1} - {R_3}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&1 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&{ - 1} \\
{ - 2}&1&0 \\
2&0&1
\end{array}} \right]A$
Applying \[{R_2} \to {R_2} - {R_3}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&{ - 1} \\
{ - 4}&1&{ - 1} \\
2&0&1
\end{array}} \right]A$
Since it is of the form $I = BA$, where matrix $B$ will be the inverse of $A$.
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&{ - 1} \\
{ - 4}&1&{ - 1} \\
2&0&1
\end{array}} \right]$
Note: A rectangular matrix does not possess an inverse matrix. It means the inverse of a matrix is defined only for a square matrix. If $B$ is the inverse of matrix $A$, then $A$ is also the inverse of matrix $B$.
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$ is the identity matrix.
Complete step-by-step answer:
Write $A = IA$, i.e.,
$\left[ {\begin{array}{*{20}{c}}
1&2&3 \\
2&5&7 \\
{ - 2}&{ - 4}&{ - 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]A$
Applying \[{R_2} \to {R_2} - 2{R_1}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&1&1 \\
{ - 2}&{ - 4}&{ - 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{ - 2}&1&0 \\
0&0&1
\end{array}} \right]A$
Applying \[{R_3} \to {R_3} + 2{R_1}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&1&1 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{ - 2}&1&0 \\
2&0&1
\end{array}} \right]A$
Applying \[{R_1} \to {R_1} - 2{R_2}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&1 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 2}&0 \\
{ - 2}&1&0 \\
2&0&1
\end{array}} \right]A$
Applying \[{R_1} \to {R_1} - {R_3}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&1 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&{ - 1} \\
{ - 2}&1&0 \\
2&0&1
\end{array}} \right]A$
Applying \[{R_2} \to {R_2} - {R_3}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&{ - 1} \\
{ - 4}&1&{ - 1} \\
2&0&1
\end{array}} \right]A$
Since it is of the form $I = BA$, where matrix $B$ will be the inverse of $A$.
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&{ - 1} \\
{ - 4}&1&{ - 1} \\
2&0&1
\end{array}} \right]$
Note: A rectangular matrix does not possess an inverse matrix. It means the inverse of a matrix is defined only for a square matrix. If $B$ is the inverse of matrix $A$, then $A$ is also the inverse of matrix $B$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

