
Use elementary row transformation, find the inverse of the matrix $A = \left[ {\begin{array}{*{20}{c}}
1&2&3 \\
2&5&7 \\
{ - 2}&{ - 4}&{ - 5}
\end{array}} \right]$
Answer
563.1k+ views
Hint: If we have to find ${A^{ - 1}}$ using row operations, write $A = IA$ and apply a sequence of row operations on $A = IA$ till we get, $I = BA$.Then, the matrix $B$ will be the inverse of $A$. Here $I = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$ is the identity matrix.
Complete step-by-step answer:
Write $A = IA$, i.e.,
$\left[ {\begin{array}{*{20}{c}}
1&2&3 \\
2&5&7 \\
{ - 2}&{ - 4}&{ - 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]A$
Applying \[{R_2} \to {R_2} - 2{R_1}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&1&1 \\
{ - 2}&{ - 4}&{ - 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{ - 2}&1&0 \\
0&0&1
\end{array}} \right]A$
Applying \[{R_3} \to {R_3} + 2{R_1}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&1&1 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{ - 2}&1&0 \\
2&0&1
\end{array}} \right]A$
Applying \[{R_1} \to {R_1} - 2{R_2}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&1 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 2}&0 \\
{ - 2}&1&0 \\
2&0&1
\end{array}} \right]A$
Applying \[{R_1} \to {R_1} - {R_3}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&1 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&{ - 1} \\
{ - 2}&1&0 \\
2&0&1
\end{array}} \right]A$
Applying \[{R_2} \to {R_2} - {R_3}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&{ - 1} \\
{ - 4}&1&{ - 1} \\
2&0&1
\end{array}} \right]A$
Since it is of the form $I = BA$, where matrix $B$ will be the inverse of $A$.
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&{ - 1} \\
{ - 4}&1&{ - 1} \\
2&0&1
\end{array}} \right]$
Note: A rectangular matrix does not possess an inverse matrix. It means the inverse of a matrix is defined only for a square matrix. If $B$ is the inverse of matrix $A$, then $A$ is also the inverse of matrix $B$.
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$ is the identity matrix.
Complete step-by-step answer:
Write $A = IA$, i.e.,
$\left[ {\begin{array}{*{20}{c}}
1&2&3 \\
2&5&7 \\
{ - 2}&{ - 4}&{ - 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]A$
Applying \[{R_2} \to {R_2} - 2{R_1}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&1&1 \\
{ - 2}&{ - 4}&{ - 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{ - 2}&1&0 \\
0&0&1
\end{array}} \right]A$
Applying \[{R_3} \to {R_3} + 2{R_1}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&1&1 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{ - 2}&1&0 \\
2&0&1
\end{array}} \right]A$
Applying \[{R_1} \to {R_1} - 2{R_2}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&1 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 2}&0 \\
{ - 2}&1&0 \\
2&0&1
\end{array}} \right]A$
Applying \[{R_1} \to {R_1} - {R_3}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&1 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&{ - 1} \\
{ - 2}&1&0 \\
2&0&1
\end{array}} \right]A$
Applying \[{R_2} \to {R_2} - {R_3}\],
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&{ - 1} \\
{ - 4}&1&{ - 1} \\
2&0&1
\end{array}} \right]A$
Since it is of the form $I = BA$, where matrix $B$ will be the inverse of $A$.
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&{ - 1} \\
{ - 4}&1&{ - 1} \\
2&0&1
\end{array}} \right]$
Note: A rectangular matrix does not possess an inverse matrix. It means the inverse of a matrix is defined only for a square matrix. If $B$ is the inverse of matrix $A$, then $A$ is also the inverse of matrix $B$.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

