
How do you use differentials to estimate the value of $\cos \left( {63} \right)$?
Answer
514.5k+ views
Hint: In order to estimate the value of $\cos \left( {63} \right)$ write the value in degree rather than radian. Then use the general formula for approximating the differentials that is $f\left( x \right) \approx f\left( a \right) + f'\left( a \right)\left( {x - a} \right)$or $f\left( x \right) \approx f\left( a \right) + f'\left( a \right)dx = f\left( a \right) + dy$, Just find the values and put them, in the formula and get the value needed.
Complete step by step solution:
We are given the value $\cos \left( {63} \right)$.
In order to solve it using approximating the differentials use the formula that is $f\left( x \right) \approx f\left( a \right) + f'\left( a \right)\left( {x - a} \right)$.Just find the values to fit in the formula and get the results.
Let’s take $f\left( x \right) = \cos {63^ \circ }$ that implies $x = {63^ \circ }$and $f\left( a \right) = \cos {60^ \circ } = \dfrac{1}{2}$(We have taken the nearest degree whose value we know) that implies $a = {60^ \circ }$.
Take $f\left( x \right) = \cos x$ in general, that gives $f'\left( x \right) = - \sin x$.
When we put the above value for $f\left( a \right)$, we get: $f'\left( a \right) = - \sin a$.By putting the value of \[a\] we get:
$f'\left( {{{60}^ \circ }} \right) = - \sin {60^ \circ } = - \dfrac{{\sqrt 3 }}{2}$
For, $\left( {x - a} \right)$, convert the values of $x$ and $a$into radians and put the values and we get:
$\left( {x - a} \right) = \left( {\dfrac{{63\pi }}{{180}} - \dfrac{{60\pi }}{{180}}} \right) = \dfrac{{3\pi }}{{180}} = \dfrac{\pi }{{60}}$.
Now, put the values of each term in the formula $f\left( x \right) \approx f\left( a \right) + f'\left( a \right)\left( {x - a} \right)$and we get:
\[
\cos \left( {{{63}^ \circ }} \right) \approx \cos \left( {{{60}^ \circ }} \right) + \left( { - \sin \dfrac{\pi }{3}} \right)\left( {\dfrac{{63\pi }}{{180}} - \dfrac{{60\pi }}{{180}}} \right) \\
\cos \left( {{{63}^ \circ }} \right) \approx \cos \left( {{{60}^ \circ }} \right) + \left( { - \sin \dfrac{\pi }{3}} \right)\left( {\dfrac{{63\pi }}{{180}} - \dfrac{{60\pi }}{{180}}} \right) \\
\cos \left( {{{63}^ \circ }} \right) \approx \cos \left( {{{60}^ \circ }} \right) + \left( { - \sin \dfrac{\pi }{3}} \right)\left( {\dfrac{{63\pi }}{{180}} - \dfrac{{60\pi }}{{180}}} \right) \\
\cos \left( {{{63}^ \circ }} \right) \approx \dfrac{1}{2} + \left( { - \dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{\pi }{{60}}} \right) \\
\cos \left( {{{63}^ \circ }} \right) \approx \dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}\left( {\dfrac{\pi }{{60}}} \right) \\
\cos \left( {{{63}^ \circ }} \right) \approx 0.5 - 0.04536 \\
\cos \left( {{{63}^ \circ }} \right) \approx 0.45464 \;
\]
Therefore, by using differentials to estimate the value of $\cos \left( {63} \right)$, we get: \[\cos \left( {{{63}^ \circ }} \right) \approx 0.45464\]
So, the correct answer is “0.45464”.
Note: Approximating by differential is also called linear approximation or using the tangent line at a nearby point.
The most general formula for linear approximation is \[f\left( x \right) = f\left( a \right) + \Delta y\] . On solving it further we get more solvable results.
$f\left( x \right) \approx f\left( a \right) + f'\left( a \right)dx = f\left( a \right) + dy$ is the equation for a line tangent for the graph of the function at the point $\left( {a,f\left( a \right)} \right)$.
We approximately find \[ \Delta y\] by changing the value along the tangent to approximate the change on the graph of the function.
Complete step by step solution:
We are given the value $\cos \left( {63} \right)$.
In order to solve it using approximating the differentials use the formula that is $f\left( x \right) \approx f\left( a \right) + f'\left( a \right)\left( {x - a} \right)$.Just find the values to fit in the formula and get the results.
Let’s take $f\left( x \right) = \cos {63^ \circ }$ that implies $x = {63^ \circ }$and $f\left( a \right) = \cos {60^ \circ } = \dfrac{1}{2}$(We have taken the nearest degree whose value we know) that implies $a = {60^ \circ }$.
Take $f\left( x \right) = \cos x$ in general, that gives $f'\left( x \right) = - \sin x$.
When we put the above value for $f\left( a \right)$, we get: $f'\left( a \right) = - \sin a$.By putting the value of \[a\] we get:
$f'\left( {{{60}^ \circ }} \right) = - \sin {60^ \circ } = - \dfrac{{\sqrt 3 }}{2}$
For, $\left( {x - a} \right)$, convert the values of $x$ and $a$into radians and put the values and we get:
$\left( {x - a} \right) = \left( {\dfrac{{63\pi }}{{180}} - \dfrac{{60\pi }}{{180}}} \right) = \dfrac{{3\pi }}{{180}} = \dfrac{\pi }{{60}}$.
Now, put the values of each term in the formula $f\left( x \right) \approx f\left( a \right) + f'\left( a \right)\left( {x - a} \right)$and we get:
\[
\cos \left( {{{63}^ \circ }} \right) \approx \cos \left( {{{60}^ \circ }} \right) + \left( { - \sin \dfrac{\pi }{3}} \right)\left( {\dfrac{{63\pi }}{{180}} - \dfrac{{60\pi }}{{180}}} \right) \\
\cos \left( {{{63}^ \circ }} \right) \approx \cos \left( {{{60}^ \circ }} \right) + \left( { - \sin \dfrac{\pi }{3}} \right)\left( {\dfrac{{63\pi }}{{180}} - \dfrac{{60\pi }}{{180}}} \right) \\
\cos \left( {{{63}^ \circ }} \right) \approx \cos \left( {{{60}^ \circ }} \right) + \left( { - \sin \dfrac{\pi }{3}} \right)\left( {\dfrac{{63\pi }}{{180}} - \dfrac{{60\pi }}{{180}}} \right) \\
\cos \left( {{{63}^ \circ }} \right) \approx \dfrac{1}{2} + \left( { - \dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{\pi }{{60}}} \right) \\
\cos \left( {{{63}^ \circ }} \right) \approx \dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}\left( {\dfrac{\pi }{{60}}} \right) \\
\cos \left( {{{63}^ \circ }} \right) \approx 0.5 - 0.04536 \\
\cos \left( {{{63}^ \circ }} \right) \approx 0.45464 \;
\]
Therefore, by using differentials to estimate the value of $\cos \left( {63} \right)$, we get: \[\cos \left( {{{63}^ \circ }} \right) \approx 0.45464\]
So, the correct answer is “0.45464”.
Note: Approximating by differential is also called linear approximation or using the tangent line at a nearby point.
The most general formula for linear approximation is \[f\left( x \right) = f\left( a \right) + \Delta y\] . On solving it further we get more solvable results.
$f\left( x \right) \approx f\left( a \right) + f'\left( a \right)dx = f\left( a \right) + dy$ is the equation for a line tangent for the graph of the function at the point $\left( {a,f\left( a \right)} \right)$.
We approximately find \[ \Delta y\] by changing the value along the tangent to approximate the change on the graph of the function.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

