
How do you use an integral to find the volume of a solid torus?
Answer
556.5k+ views
Hint: Here we will use the fact that a torus is obtained by rotating a circular region about the \[x\]-axis. We will use the washer method to form an expression of obtaining a torus. Finally, we will simplify the expression to get the required answer.
Complete step-by-step answer:
The volume of a torus whose radius of circular cross-section is \[r\] and the radius of the circle traced by the center of the cross-section is \[R\] is given as, \[V = 2{\pi ^2}{r^2}R\].
So we have to use integral to get the above value of the volume of a solid torus.
As we know a torus is obtained by rotating the circular region about the x-axis so it can be written as,
\[{x^2} + {\left( {y - R} \right)^2} = {r^2}\]
Subtracting \[{x^2}\] from both the sides, we get
\[\begin{array}{l} \Rightarrow {\left( {y - R} \right)^2} = {r^2} - {x^2}\\ \Rightarrow \left( {y - R} \right) = \pm \sqrt {{r^2} - {x^2}} \end{array}\]
Adding \[R\] on both the sides, we get
\[ \Rightarrow y = R \pm \sqrt {{r^2} - {x^2}} \]
So, we have two regions as,
\[y = R + \sqrt {{r^2} - {x^2}} \] and \[y = R - \sqrt {{r^2} - {x^2}} \]
As we have two regions in-between which the circular Region is present, so here we can use Washer Method.
According to Washer Method, the volume of the solid of revolution can be expressed as \[\int\limits_a^b {\pi \left( {{f^2} - {g^2}} \right)dx} = \int\limits_a^b {\pi \left( {{f^2}\left( x \right)} \right)dx} - \int\limits_a^b {\pi \left( {{g^2}\left( x \right)} \right)dx} \]
Here, \[y = f\left( x \right)\]and\[y = g\left( x \right)\] are two curves.
In this case we have \[f\left( x \right) = R + \sqrt {{r^2} - {x^2}} \] and \[g\left( x \right) = R - \sqrt {{r^2} - {x^2}} \].
Substituting the above values in the formula \[\int\limits_a^b {\pi \left( {{f^2} - {g^2}} \right)dx} = \int\limits_a^b {\pi \left( {{f^2}\left( x \right)} \right)dx} - \int\limits_a^b {\pi \left( {{g^2}\left( x \right)} \right)dx} \] we get,
\[\int\limits_a^b {\pi \left( {{f^2} - {g^2}} \right)dx} = \int\limits_a^b {\pi {{\left( {R + \sqrt {{r^2} - {x^2}} } \right)}^2}dx} - \int\limits_a^b {\pi {{\left( {R - \sqrt {{r^2} - {x^2}} } \right)}^2}dx} \]
Substituting the limit of \[x\] from \[r\] to \[ - r\] and \[\int\limits_{ - r}^r {\pi \left( {{f^2} - {g^2}} \right)dx} = V\], we get
\[ \Rightarrow V = \int\limits_{ - r}^r {\pi {{\left( {R + \sqrt {{r^2} - {x^2}} } \right)}^2}dx} - \int\limits_{ - r}^r {\pi {{\left( {R - \sqrt {{r^2} - {x^2}} } \right)}^2}dx} \]
Simplifying the equation, we get
\[ \Rightarrow V = \pi \int\limits_{ - r}^r {\left( {\left( {{{\left( {R + \sqrt {{r^2} - {x^2}} } \right)}^2} - {{\left( {R - \sqrt {{r^2} - {x^2}} } \right)}^2}} \right)} \right)} dx\]
Using the algebraic identities, we get
\[ \Rightarrow V = \pi \int\limits_{ - r}^r {\left( {{R^2} + \left( {{r^2} - {x^2}} \right) + 2 \times R\left( {{r^2} - {x^2}} \right) - \left( {{R^2} - 2 \times R \times \left( {{r^2} - {x^2}} \right) + \left( {{r^2} - {x^2}} \right)} \right)} \right)} dx\]
Multiplying the terms, we get
\[ \Rightarrow V = \pi \int\limits_{ - r}^r {\left( {{R^2} + 2R\left( {{r^2} - {x^2}} \right) + \left( {{r^2} - {x^2}} \right) - {R^2} + 2R\left( {{r^2} - {x^2}} \right) - \left( {{r^2} - {x^2}} \right)} \right)dx} \]
Adding and subtracting the like terms, we get
\[ \Rightarrow V = 4\pi R\int\limits_{ - r}^r {\left( {{r^2} - {x^2}} \right)dx} \]
As we can see that above integral is equivalent to the area of a semicircle having radius as \[r\] we get,
\[\begin{array}{l} \Rightarrow V = 4\pi R \times \dfrac{1}{2}\pi {r^2}\\ \Rightarrow V = 2{\pi ^2}{r^2}R\end{array}\]
As we can see the value we got above is same as the volume of a torus \[V = 2{\pi ^2}{r^2}R\], therefore the Volume of solid torus is \[2{\pi ^2}{r^2}R\].
Note:
A solid torus is a shape formed when we sweep a disk around a circle. We can visualize a solid torus as a toroid embedded in 3-space.
According to the Washer Method: Let us consider a region \[R\] between two curves \[y = f\left( x \right)\] and \[y = g\left( x \right)\] where both the curves are non-negative and \[g\left( x \right) \le f\left( x \right)\] for interval from \[x = a\]\[x = b\]. So, the volume traced when \[R\] is rotated about the x-axis is given as:
\[\int\limits_a^b {\pi \left( {{f^2} - {g^2}} \right)dx} = \int\limits_a^b {\pi \left( {{f^2}\left( x \right)} \right)dx} - \int\limits_a^b {\pi \left( {{g^2}\left( x \right)} \right)dx} \]
Complete step-by-step answer:
The volume of a torus whose radius of circular cross-section is \[r\] and the radius of the circle traced by the center of the cross-section is \[R\] is given as, \[V = 2{\pi ^2}{r^2}R\].
So we have to use integral to get the above value of the volume of a solid torus.
As we know a torus is obtained by rotating the circular region about the x-axis so it can be written as,
\[{x^2} + {\left( {y - R} \right)^2} = {r^2}\]
Subtracting \[{x^2}\] from both the sides, we get
\[\begin{array}{l} \Rightarrow {\left( {y - R} \right)^2} = {r^2} - {x^2}\\ \Rightarrow \left( {y - R} \right) = \pm \sqrt {{r^2} - {x^2}} \end{array}\]
Adding \[R\] on both the sides, we get
\[ \Rightarrow y = R \pm \sqrt {{r^2} - {x^2}} \]
So, we have two regions as,
\[y = R + \sqrt {{r^2} - {x^2}} \] and \[y = R - \sqrt {{r^2} - {x^2}} \]
As we have two regions in-between which the circular Region is present, so here we can use Washer Method.
According to Washer Method, the volume of the solid of revolution can be expressed as \[\int\limits_a^b {\pi \left( {{f^2} - {g^2}} \right)dx} = \int\limits_a^b {\pi \left( {{f^2}\left( x \right)} \right)dx} - \int\limits_a^b {\pi \left( {{g^2}\left( x \right)} \right)dx} \]
Here, \[y = f\left( x \right)\]and\[y = g\left( x \right)\] are two curves.
In this case we have \[f\left( x \right) = R + \sqrt {{r^2} - {x^2}} \] and \[g\left( x \right) = R - \sqrt {{r^2} - {x^2}} \].
Substituting the above values in the formula \[\int\limits_a^b {\pi \left( {{f^2} - {g^2}} \right)dx} = \int\limits_a^b {\pi \left( {{f^2}\left( x \right)} \right)dx} - \int\limits_a^b {\pi \left( {{g^2}\left( x \right)} \right)dx} \] we get,
\[\int\limits_a^b {\pi \left( {{f^2} - {g^2}} \right)dx} = \int\limits_a^b {\pi {{\left( {R + \sqrt {{r^2} - {x^2}} } \right)}^2}dx} - \int\limits_a^b {\pi {{\left( {R - \sqrt {{r^2} - {x^2}} } \right)}^2}dx} \]
Substituting the limit of \[x\] from \[r\] to \[ - r\] and \[\int\limits_{ - r}^r {\pi \left( {{f^2} - {g^2}} \right)dx} = V\], we get
\[ \Rightarrow V = \int\limits_{ - r}^r {\pi {{\left( {R + \sqrt {{r^2} - {x^2}} } \right)}^2}dx} - \int\limits_{ - r}^r {\pi {{\left( {R - \sqrt {{r^2} - {x^2}} } \right)}^2}dx} \]
Simplifying the equation, we get
\[ \Rightarrow V = \pi \int\limits_{ - r}^r {\left( {\left( {{{\left( {R + \sqrt {{r^2} - {x^2}} } \right)}^2} - {{\left( {R - \sqrt {{r^2} - {x^2}} } \right)}^2}} \right)} \right)} dx\]
Using the algebraic identities, we get
\[ \Rightarrow V = \pi \int\limits_{ - r}^r {\left( {{R^2} + \left( {{r^2} - {x^2}} \right) + 2 \times R\left( {{r^2} - {x^2}} \right) - \left( {{R^2} - 2 \times R \times \left( {{r^2} - {x^2}} \right) + \left( {{r^2} - {x^2}} \right)} \right)} \right)} dx\]
Multiplying the terms, we get
\[ \Rightarrow V = \pi \int\limits_{ - r}^r {\left( {{R^2} + 2R\left( {{r^2} - {x^2}} \right) + \left( {{r^2} - {x^2}} \right) - {R^2} + 2R\left( {{r^2} - {x^2}} \right) - \left( {{r^2} - {x^2}} \right)} \right)dx} \]
Adding and subtracting the like terms, we get
\[ \Rightarrow V = 4\pi R\int\limits_{ - r}^r {\left( {{r^2} - {x^2}} \right)dx} \]
As we can see that above integral is equivalent to the area of a semicircle having radius as \[r\] we get,
\[\begin{array}{l} \Rightarrow V = 4\pi R \times \dfrac{1}{2}\pi {r^2}\\ \Rightarrow V = 2{\pi ^2}{r^2}R\end{array}\]
As we can see the value we got above is same as the volume of a torus \[V = 2{\pi ^2}{r^2}R\], therefore the Volume of solid torus is \[2{\pi ^2}{r^2}R\].
Note:
A solid torus is a shape formed when we sweep a disk around a circle. We can visualize a solid torus as a toroid embedded in 3-space.
According to the Washer Method: Let us consider a region \[R\] between two curves \[y = f\left( x \right)\] and \[y = g\left( x \right)\] where both the curves are non-negative and \[g\left( x \right) \le f\left( x \right)\] for interval from \[x = a\]\[x = b\]. So, the volume traced when \[R\] is rotated about the x-axis is given as:
\[\int\limits_a^b {\pi \left( {{f^2} - {g^2}} \right)dx} = \int\limits_a^b {\pi \left( {{f^2}\left( x \right)} \right)dx} - \int\limits_a^b {\pi \left( {{g^2}\left( x \right)} \right)dx} \]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

