
How do you use a Power Series to estimate the integral $ \int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} $ ?
Answer
529.5k+ views
Hint: In order to find the integral of the given function with the given limits we need to use the power series. According to Maclaurin’s theorem for the cosine and sine function for the angle $ x $ (in radians) we know that:
$ \cos \left( x \right) = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - ...... $
$ \sin \left( x \right) = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ..... $
Complete step by step solution:
We are given the function $ \int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} $ .We need to use Power series to estimate the integral of the given function.
From, Maclaurin’s theorem for the cosine and sine function for the angle $ x $ (in radians) we know that:
$ \cos \left( x \right) = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - ...... $
$ \sin \left( x \right) = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ..... $
But here we are given with $ \cos \left( {{x^2}} \right) $ So let’s change the values accordingly.
$ \cos \left( x \right) = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - ...... $
So, we can write $ {x^2} $ instead of $ x $ and we get:
$ \cos \left( {{x^2}} \right) = 1 - \dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}} - ...... $
According to the Question, Put the above value and integrate it with the given limits, and we get:
\[\int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} = \int\limits_0^{0.01} {\left( {1 - \dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}} - ......} \right)} dx\]
Separating the terms and integrating it, we get:
\[
\int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} = \int\limits_0^{0.01} {\left( {1 - \dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}} - ......} \right)} dx \\
= \int\limits_0^{0.01} {1dx} - \int\limits_0^{0.01} {\dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}}dx} + \int\limits_0^{0.01} {\dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}}dx} - ..... \\
= \int\limits_0^{0.01} {dx} - \int\limits_0^{0.01} {\dfrac{{\left( {{x^4}} \right)}}{{2!}}dx} + \int\limits_0^{0.01} {\dfrac{{\left( {{x^8}} \right)}}{{4!}}dx} - ..... \\
= \left[ x \right] _0^{0.01} - \left[ {\dfrac{{{x^5}}}{{5.2!}}} \right] _0^{0.01} + \left[ {\dfrac{{{x^9}}}{{9.4!}}} \right] _0^{0.01} - ..... \\
= \left[ {0.01 - 0} \right] - \left[ {\dfrac{{{{0.01}^5}}}{{5.2!}} - \dfrac{{{0^5}}}{{5.2!}}} \right] + \left[ {\dfrac{{{{0.01}^9}}}{{9.4!}} - \dfrac{{{0^9}}}{{9.4!}}} \right] - ..... \\
\approx 0.01 \;
\]
From the Second term onwards, terms are too small, so that terms are negligible.
Therefore, using the Power series for cosine to estimate the integral function $ \int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} $ we get the value approx $ \approx 0.01 $ .
So, the correct answer is “ $ \approx 0.01 $ ”.
Note: If there was sine instead of cosine then use the formula of sine that is $ \sin \left( x \right) = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ..... $ and rest would be same.
Many other properties for cosine and sine functions can be derived from these expansions: Like:
$
\sin \left( { - x} \right) = - \sin \left( x \right) \\
\cos \left( { - x} \right) = \cos \left( x \right) \\
\dfrac{{d\cos x}}{{dx}} = - \sin x \;
$
$ \cos \left( x \right) = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - ...... $
$ \sin \left( x \right) = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ..... $
Complete step by step solution:
We are given the function $ \int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} $ .We need to use Power series to estimate the integral of the given function.
From, Maclaurin’s theorem for the cosine and sine function for the angle $ x $ (in radians) we know that:
$ \cos \left( x \right) = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - ...... $
$ \sin \left( x \right) = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ..... $
But here we are given with $ \cos \left( {{x^2}} \right) $ So let’s change the values accordingly.
$ \cos \left( x \right) = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - ...... $
So, we can write $ {x^2} $ instead of $ x $ and we get:
$ \cos \left( {{x^2}} \right) = 1 - \dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}} - ...... $
According to the Question, Put the above value and integrate it with the given limits, and we get:
\[\int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} = \int\limits_0^{0.01} {\left( {1 - \dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}} - ......} \right)} dx\]
Separating the terms and integrating it, we get:
\[
\int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} = \int\limits_0^{0.01} {\left( {1 - \dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}} - ......} \right)} dx \\
= \int\limits_0^{0.01} {1dx} - \int\limits_0^{0.01} {\dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}}dx} + \int\limits_0^{0.01} {\dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}}dx} - ..... \\
= \int\limits_0^{0.01} {dx} - \int\limits_0^{0.01} {\dfrac{{\left( {{x^4}} \right)}}{{2!}}dx} + \int\limits_0^{0.01} {\dfrac{{\left( {{x^8}} \right)}}{{4!}}dx} - ..... \\
= \left[ x \right] _0^{0.01} - \left[ {\dfrac{{{x^5}}}{{5.2!}}} \right] _0^{0.01} + \left[ {\dfrac{{{x^9}}}{{9.4!}}} \right] _0^{0.01} - ..... \\
= \left[ {0.01 - 0} \right] - \left[ {\dfrac{{{{0.01}^5}}}{{5.2!}} - \dfrac{{{0^5}}}{{5.2!}}} \right] + \left[ {\dfrac{{{{0.01}^9}}}{{9.4!}} - \dfrac{{{0^9}}}{{9.4!}}} \right] - ..... \\
\approx 0.01 \;
\]
From the Second term onwards, terms are too small, so that terms are negligible.
Therefore, using the Power series for cosine to estimate the integral function $ \int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} $ we get the value approx $ \approx 0.01 $ .
So, the correct answer is “ $ \approx 0.01 $ ”.
Note: If there was sine instead of cosine then use the formula of sine that is $ \sin \left( x \right) = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ..... $ and rest would be same.
Many other properties for cosine and sine functions can be derived from these expansions: Like:
$
\sin \left( { - x} \right) = - \sin \left( x \right) \\
\cos \left( { - x} \right) = \cos \left( x \right) \\
\dfrac{{d\cos x}}{{dx}} = - \sin x \;
$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

