
How do you use a Power Series to estimate the integral $ \int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} $ ?
Answer
516k+ views
Hint: In order to find the integral of the given function with the given limits we need to use the power series. According to Maclaurin’s theorem for the cosine and sine function for the angle $ x $ (in radians) we know that:
$ \cos \left( x \right) = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - ...... $
$ \sin \left( x \right) = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ..... $
Complete step by step solution:
We are given the function $ \int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} $ .We need to use Power series to estimate the integral of the given function.
From, Maclaurin’s theorem for the cosine and sine function for the angle $ x $ (in radians) we know that:
$ \cos \left( x \right) = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - ...... $
$ \sin \left( x \right) = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ..... $
But here we are given with $ \cos \left( {{x^2}} \right) $ So let’s change the values accordingly.
$ \cos \left( x \right) = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - ...... $
So, we can write $ {x^2} $ instead of $ x $ and we get:
$ \cos \left( {{x^2}} \right) = 1 - \dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}} - ...... $
According to the Question, Put the above value and integrate it with the given limits, and we get:
\[\int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} = \int\limits_0^{0.01} {\left( {1 - \dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}} - ......} \right)} dx\]
Separating the terms and integrating it, we get:
\[
\int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} = \int\limits_0^{0.01} {\left( {1 - \dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}} - ......} \right)} dx \\
= \int\limits_0^{0.01} {1dx} - \int\limits_0^{0.01} {\dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}}dx} + \int\limits_0^{0.01} {\dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}}dx} - ..... \\
= \int\limits_0^{0.01} {dx} - \int\limits_0^{0.01} {\dfrac{{\left( {{x^4}} \right)}}{{2!}}dx} + \int\limits_0^{0.01} {\dfrac{{\left( {{x^8}} \right)}}{{4!}}dx} - ..... \\
= \left[ x \right] _0^{0.01} - \left[ {\dfrac{{{x^5}}}{{5.2!}}} \right] _0^{0.01} + \left[ {\dfrac{{{x^9}}}{{9.4!}}} \right] _0^{0.01} - ..... \\
= \left[ {0.01 - 0} \right] - \left[ {\dfrac{{{{0.01}^5}}}{{5.2!}} - \dfrac{{{0^5}}}{{5.2!}}} \right] + \left[ {\dfrac{{{{0.01}^9}}}{{9.4!}} - \dfrac{{{0^9}}}{{9.4!}}} \right] - ..... \\
\approx 0.01 \;
\]
From the Second term onwards, terms are too small, so that terms are negligible.
Therefore, using the Power series for cosine to estimate the integral function $ \int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} $ we get the value approx $ \approx 0.01 $ .
So, the correct answer is “ $ \approx 0.01 $ ”.
Note: If there was sine instead of cosine then use the formula of sine that is $ \sin \left( x \right) = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ..... $ and rest would be same.
Many other properties for cosine and sine functions can be derived from these expansions: Like:
$
\sin \left( { - x} \right) = - \sin \left( x \right) \\
\cos \left( { - x} \right) = \cos \left( x \right) \\
\dfrac{{d\cos x}}{{dx}} = - \sin x \;
$
$ \cos \left( x \right) = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - ...... $
$ \sin \left( x \right) = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ..... $
Complete step by step solution:
We are given the function $ \int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} $ .We need to use Power series to estimate the integral of the given function.
From, Maclaurin’s theorem for the cosine and sine function for the angle $ x $ (in radians) we know that:
$ \cos \left( x \right) = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - ...... $
$ \sin \left( x \right) = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ..... $
But here we are given with $ \cos \left( {{x^2}} \right) $ So let’s change the values accordingly.
$ \cos \left( x \right) = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - ...... $
So, we can write $ {x^2} $ instead of $ x $ and we get:
$ \cos \left( {{x^2}} \right) = 1 - \dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}} - ...... $
According to the Question, Put the above value and integrate it with the given limits, and we get:
\[\int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} = \int\limits_0^{0.01} {\left( {1 - \dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}} - ......} \right)} dx\]
Separating the terms and integrating it, we get:
\[
\int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} = \int\limits_0^{0.01} {\left( {1 - \dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}} - ......} \right)} dx \\
= \int\limits_0^{0.01} {1dx} - \int\limits_0^{0.01} {\dfrac{{{{\left( {{x^2}} \right)}^2}}}{{2!}}dx} + \int\limits_0^{0.01} {\dfrac{{{{\left( {{x^2}} \right)}^4}}}{{4!}}dx} - ..... \\
= \int\limits_0^{0.01} {dx} - \int\limits_0^{0.01} {\dfrac{{\left( {{x^4}} \right)}}{{2!}}dx} + \int\limits_0^{0.01} {\dfrac{{\left( {{x^8}} \right)}}{{4!}}dx} - ..... \\
= \left[ x \right] _0^{0.01} - \left[ {\dfrac{{{x^5}}}{{5.2!}}} \right] _0^{0.01} + \left[ {\dfrac{{{x^9}}}{{9.4!}}} \right] _0^{0.01} - ..... \\
= \left[ {0.01 - 0} \right] - \left[ {\dfrac{{{{0.01}^5}}}{{5.2!}} - \dfrac{{{0^5}}}{{5.2!}}} \right] + \left[ {\dfrac{{{{0.01}^9}}}{{9.4!}} - \dfrac{{{0^9}}}{{9.4!}}} \right] - ..... \\
\approx 0.01 \;
\]
From the Second term onwards, terms are too small, so that terms are negligible.
Therefore, using the Power series for cosine to estimate the integral function $ \int\limits_0^{0.01} {\cos \left( {{x^2}} \right)dx} $ we get the value approx $ \approx 0.01 $ .
So, the correct answer is “ $ \approx 0.01 $ ”.
Note: If there was sine instead of cosine then use the formula of sine that is $ \sin \left( x \right) = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ..... $ and rest would be same.
Many other properties for cosine and sine functions can be derived from these expansions: Like:
$
\sin \left( { - x} \right) = - \sin \left( x \right) \\
\cos \left( { - x} \right) = \cos \left( x \right) \\
\dfrac{{d\cos x}}{{dx}} = - \sin x \;
$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

