
What is the unit’s digit of the product of all prime numbers between $1$ and $100$?
(A) $0$
(B) $1$
(C) $2$
(D) $3$
Answer
479.1k+ views
Hint: In the given question we are asked only to find the unit’s digit of the product of all prime numbers between \[1\] and $100$. Firstly, write some starting prime numbers. We know that the product of one $2$ and one $5$ gives one zero at unit digits. Then observe the prime number to get the digit at the unit's place of the product.
Complete step-by-step answer:
Here, we have to find the unit’s digit of the product of all prime numbers between $1$ and $100$.
Now, write the prime numbers between $1$ and $100$. These are
$2$, $3$, $5$, $7$, $11$, $13$, $17$, $19$, $23$, $29$, $31$, $37$, $41$, - - - - - - - - - - - - - - - - - - - - - - - - - - - - - $97$.
Now, we have to find the product of the prime numbers between $1$ and $100$. So,
Product $ = 2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17$- - - - - - - - - - - - - - - - - - $ \times 97$
Here, we observe that we multiply $2$ and $5$once which give one zero at the ones digit and when this is multiplied with the other numbers then also zero remains at the unit's place of the product.
So, the unit’s digit of the product is $0$.
Thus, option (A) is correct.
Note:
Similar concept is applied to find the number of zero in last in the product of all natural numbers between $1$ and $100$. We have to find the total number of $2$ and $5$ in their factors and the total number of zero is equal to the number of $2$ or $5$which is less in number.
Complete step-by-step answer:
Here, we have to find the unit’s digit of the product of all prime numbers between $1$ and $100$.
Now, write the prime numbers between $1$ and $100$. These are
$2$, $3$, $5$, $7$, $11$, $13$, $17$, $19$, $23$, $29$, $31$, $37$, $41$, - - - - - - - - - - - - - - - - - - - - - - - - - - - - - $97$.
Now, we have to find the product of the prime numbers between $1$ and $100$. So,
Product $ = 2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17$- - - - - - - - - - - - - - - - - - $ \times 97$
Here, we observe that we multiply $2$ and $5$once which give one zero at the ones digit and when this is multiplied with the other numbers then also zero remains at the unit's place of the product.
So, the unit’s digit of the product is $0$.
Thus, option (A) is correct.
Note:
Similar concept is applied to find the number of zero in last in the product of all natural numbers between $1$ and $100$. We have to find the total number of $2$ and $5$ in their factors and the total number of zero is equal to the number of $2$ or $5$which is less in number.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Questions & Answers - Ask your doubts

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Differentiate between the Western and the Eastern class 9 social science CBSE
