
Unit vectors $\vec a$ and $\vec b$ are perpendicular and a unit vector $\vec c$ is inclined at an angle $\theta $ to both $\vec a$ and $\vec b$. If $\vec c = \alpha \vec a + \beta \vec b + \gamma \left( {\vec a \times \vec b} \right)$, then
A) $\alpha = \beta $
B) ${\gamma ^2} = 1 - 2{\alpha ^2}$
C) ${\gamma ^2} = - \cos 2\theta $
D) ${\beta ^2} = \dfrac{{1 + \cos 2\theta }}{2}$
Answer
577.8k+ views
Hint: We will first find the dot products of $\vec a,\vec b$ and $\vec c$with each other. Then take the $\vec c = \alpha \vec a + \beta \vec b + \gamma \left( {\vec a \times \vec b} \right)$ and take its dot product with $\vec a,\vec b$ to reach to the values of $\alpha $ and $\beta $. Then use their values in $\vec c$ and do some modifications to get the value of $\gamma $.
Complete step-by-step answer:
We know that \[\vec a \cdot \vec b = \left| {\vec a} \right| \cdot \left| {\vec b} \right| \cdot \cos \theta \], where $\theta $ is the angle between $\vec a$ and $\vec b$.
Since, $\vec a$, $\vec b$ and $\vec c$ are unit vectors.
The dot product of $\vec a$ with $\vec a$ is,
$ \Rightarrow \vec a \cdot \vec a = \left| {\vec a} \right| \cdot \left| {\vec a} \right| \cdot \cos 0$
Since, $\vec a$ is unit vectors.
$ \Rightarrow \vec a \cdot \vec a = {\left| {\vec a} \right|^2} = 1$...........….. (1)
The dot product of $\vec b$ with $\vec b$ is,
\[ \Rightarrow \vec b \cdot \vec b = \left| {\vec b} \right| \cdot \left| {\vec b} \right| \cdot \cos 0\]
Since, $\vec b$ is unit vectors.
\[ \Rightarrow \vec b \cdot \vec b = {\left| {\vec b} \right|^2} = 1\]..............….. (2)
Now, the dot product of $\vec a$ with $\vec c$ is,
\[ \Rightarrow \vec a \cdot \vec c = \left| {\vec a} \right| \cdot \left| {\vec c} \right| \cdot \cos \theta \]
Since, $\vec a$ and $\vec c$ are unit vectors.
\[ \Rightarrow \vec a \cdot \vec c = \cos \theta \].................….. (3)
Now, the dot product of $\vec b$ with $\vec c$ is,
\[ \Rightarrow \vec b \cdot \vec c = \left| {\vec b} \right| \cdot \left| {\vec c} \right| \cdot \cos \theta \]
Since, $\vec b$ and $\vec c$ are unit vectors.
\[ \Rightarrow \vec b \cdot \vec c = \cos \theta \]..............….. (4)
Since, $\vec a$ and $\vec b$ are parallel to each other.
\[ \Rightarrow \vec a \cdot \vec b = \left| {\vec a} \right| \cdot \left| {\vec b} \right| \cdot \cos 90\]
Substitute the values,
\[ \Rightarrow \vec a \cdot \vec b = 0\]............….. (5)
We also know that if we have two vectors then the resultant of their cross product is always perpendicular to both the vectors.
So, $\vec a$ is perpendicular to \[\left( {\vec a \times \vec b} \right)\],
\[ \Rightarrow \vec a \cdot \left( {\vec a \times \vec b} \right) = 0\]...........….. (6)
So, $\vec b$ is perpendicular to \[\left( {\vec a \times \vec b} \right)\] as well,
\[ \Rightarrow \vec b \cdot \left( {\vec a \times \vec b} \right) = 0\].........….. (7)
Now, we have $\vec c = \alpha \vec a + \beta \vec b + \gamma \left( {\vec a \times \vec b} \right)$. So,
\[ \Rightarrow \vec b \cdot \vec c = \vec b \cdot \left\{ {\alpha \vec a + \beta \vec b + \gamma \left( {\vec a \times \vec b} \right)} \right\}\]
This can be written as,
\[ \Rightarrow \vec b \cdot \vec c = \alpha \left( {\vec b \cdot \vec a} \right) + \beta \left( {\vec b \cdot \vec b} \right) + \gamma \left\{ {\vec b \cdot \left( {\vec a \times \vec b} \right)} \right\}\]
Substitute the values from equation (2), (4), (5), and (7)
$ \Rightarrow \cos \theta = \beta $..............….. (8)
Now, find the dot product of \[\vec a\] and \[\vec c\].
\[ \Rightarrow \vec a \cdot \vec c = \vec a \cdot \left\{ {\alpha \vec a + \beta \vec b + \gamma \left( {\vec a \times \vec b} \right)} \right\}\]
This can be written as,
\[ \Rightarrow \vec a \cdot \vec c = \alpha \left( {\vec a \cdot \vec a} \right) + \beta \left( {\vec a \cdot \vec b} \right) + \gamma \left\{ {\vec a \cdot \left( {\vec a \times \vec b} \right)} \right\}\]
Substitute the values from equation (1), (4), (5) and (7)
$ \Rightarrow \cos \theta = \alpha $............….. (9)
Compare equation (8) and (9),
$\therefore \alpha = \beta $
Substitute the value in $\vec c$,
\[ \Rightarrow \vec c = \alpha \vec a + \alpha \vec b + \gamma \left( {\vec a \times \vec b} \right)\]
Now, the dot product of $\vec c$ with $\vec c$,
\[ \Rightarrow \vec c \cdot \vec c = {\left( {\alpha \vec a} \right)^2} + {\left( {\alpha \vec b} \right)^2} + {\left\{ {\gamma \left( {\vec a \times \vec b} \right)} \right\}^2}\]
Square the terms,
\[ \Rightarrow \vec c \cdot \vec c = {\alpha ^2}\left( {\vec a \cdot \vec a} \right) + {\alpha ^2}\left( {\vec b \cdot \vec b} \right) + {\gamma ^2}{\left( {\vec a \times \vec b} \right)^2}\]
Substitute the values as all are unit vectors,
$ \Rightarrow 1 = {\alpha ^2} + {\alpha ^2} + {\gamma ^2}$
Add the terms on the right side,
$ \Rightarrow 1 = 2{\alpha ^2} + {\gamma ^2}$
Move $2{\alpha ^2}$ on the other side,
$\therefore {\gamma ^2} = 1 - 2{\alpha ^2}$.........….. (10)
Now, substitute the value of $\alpha $ from equation (9),
$ \Rightarrow {\gamma ^2} = 1 - 2{\cos ^2}\theta $
Take -1 common from right side,
$ \Rightarrow {\gamma ^2} = - \left( {2{{\cos }^2}\theta - 1} \right)$
Substitute the value $\cos 2\theta = 2{\cos ^2}\theta - 1$,
$\therefore {\gamma ^2} = - \cos 2\theta $..........….. (11)
Compare equation (10) and (11),
$ \Rightarrow 1 - 2{\alpha ^2} = - \cos 2\theta $
Substitute the value $\beta $ in place of $\alpha $,
$ \Rightarrow 1 - 2{\beta ^2} = - \cos 2\theta $
Simplify the terms,
$ \Rightarrow 2{\beta ^2} = 1 + \cos 2\theta $
Divide both sides by 2,
$\therefore {\beta ^2} = \dfrac{{1 + \cos 2\theta }}{2}$
Hence, option (a), (b), (c) and (d) all are correct.
Note: A vector is an object that has both magnitude and direction. The students must know the difference between the dot product and cross product. The dot product results in a scalar quantity whereas the cross-product results in a vector only.
Complete step-by-step answer:
We know that \[\vec a \cdot \vec b = \left| {\vec a} \right| \cdot \left| {\vec b} \right| \cdot \cos \theta \], where $\theta $ is the angle between $\vec a$ and $\vec b$.
Since, $\vec a$, $\vec b$ and $\vec c$ are unit vectors.
The dot product of $\vec a$ with $\vec a$ is,
$ \Rightarrow \vec a \cdot \vec a = \left| {\vec a} \right| \cdot \left| {\vec a} \right| \cdot \cos 0$
Since, $\vec a$ is unit vectors.
$ \Rightarrow \vec a \cdot \vec a = {\left| {\vec a} \right|^2} = 1$...........….. (1)
The dot product of $\vec b$ with $\vec b$ is,
\[ \Rightarrow \vec b \cdot \vec b = \left| {\vec b} \right| \cdot \left| {\vec b} \right| \cdot \cos 0\]
Since, $\vec b$ is unit vectors.
\[ \Rightarrow \vec b \cdot \vec b = {\left| {\vec b} \right|^2} = 1\]..............….. (2)
Now, the dot product of $\vec a$ with $\vec c$ is,
\[ \Rightarrow \vec a \cdot \vec c = \left| {\vec a} \right| \cdot \left| {\vec c} \right| \cdot \cos \theta \]
Since, $\vec a$ and $\vec c$ are unit vectors.
\[ \Rightarrow \vec a \cdot \vec c = \cos \theta \].................….. (3)
Now, the dot product of $\vec b$ with $\vec c$ is,
\[ \Rightarrow \vec b \cdot \vec c = \left| {\vec b} \right| \cdot \left| {\vec c} \right| \cdot \cos \theta \]
Since, $\vec b$ and $\vec c$ are unit vectors.
\[ \Rightarrow \vec b \cdot \vec c = \cos \theta \]..............….. (4)
Since, $\vec a$ and $\vec b$ are parallel to each other.
\[ \Rightarrow \vec a \cdot \vec b = \left| {\vec a} \right| \cdot \left| {\vec b} \right| \cdot \cos 90\]
Substitute the values,
\[ \Rightarrow \vec a \cdot \vec b = 0\]............….. (5)
We also know that if we have two vectors then the resultant of their cross product is always perpendicular to both the vectors.
So, $\vec a$ is perpendicular to \[\left( {\vec a \times \vec b} \right)\],
\[ \Rightarrow \vec a \cdot \left( {\vec a \times \vec b} \right) = 0\]...........….. (6)
So, $\vec b$ is perpendicular to \[\left( {\vec a \times \vec b} \right)\] as well,
\[ \Rightarrow \vec b \cdot \left( {\vec a \times \vec b} \right) = 0\].........….. (7)
Now, we have $\vec c = \alpha \vec a + \beta \vec b + \gamma \left( {\vec a \times \vec b} \right)$. So,
\[ \Rightarrow \vec b \cdot \vec c = \vec b \cdot \left\{ {\alpha \vec a + \beta \vec b + \gamma \left( {\vec a \times \vec b} \right)} \right\}\]
This can be written as,
\[ \Rightarrow \vec b \cdot \vec c = \alpha \left( {\vec b \cdot \vec a} \right) + \beta \left( {\vec b \cdot \vec b} \right) + \gamma \left\{ {\vec b \cdot \left( {\vec a \times \vec b} \right)} \right\}\]
Substitute the values from equation (2), (4), (5), and (7)
$ \Rightarrow \cos \theta = \beta $..............….. (8)
Now, find the dot product of \[\vec a\] and \[\vec c\].
\[ \Rightarrow \vec a \cdot \vec c = \vec a \cdot \left\{ {\alpha \vec a + \beta \vec b + \gamma \left( {\vec a \times \vec b} \right)} \right\}\]
This can be written as,
\[ \Rightarrow \vec a \cdot \vec c = \alpha \left( {\vec a \cdot \vec a} \right) + \beta \left( {\vec a \cdot \vec b} \right) + \gamma \left\{ {\vec a \cdot \left( {\vec a \times \vec b} \right)} \right\}\]
Substitute the values from equation (1), (4), (5) and (7)
$ \Rightarrow \cos \theta = \alpha $............….. (9)
Compare equation (8) and (9),
$\therefore \alpha = \beta $
Substitute the value in $\vec c$,
\[ \Rightarrow \vec c = \alpha \vec a + \alpha \vec b + \gamma \left( {\vec a \times \vec b} \right)\]
Now, the dot product of $\vec c$ with $\vec c$,
\[ \Rightarrow \vec c \cdot \vec c = {\left( {\alpha \vec a} \right)^2} + {\left( {\alpha \vec b} \right)^2} + {\left\{ {\gamma \left( {\vec a \times \vec b} \right)} \right\}^2}\]
Square the terms,
\[ \Rightarrow \vec c \cdot \vec c = {\alpha ^2}\left( {\vec a \cdot \vec a} \right) + {\alpha ^2}\left( {\vec b \cdot \vec b} \right) + {\gamma ^2}{\left( {\vec a \times \vec b} \right)^2}\]
Substitute the values as all are unit vectors,
$ \Rightarrow 1 = {\alpha ^2} + {\alpha ^2} + {\gamma ^2}$
Add the terms on the right side,
$ \Rightarrow 1 = 2{\alpha ^2} + {\gamma ^2}$
Move $2{\alpha ^2}$ on the other side,
$\therefore {\gamma ^2} = 1 - 2{\alpha ^2}$.........….. (10)
Now, substitute the value of $\alpha $ from equation (9),
$ \Rightarrow {\gamma ^2} = 1 - 2{\cos ^2}\theta $
Take -1 common from right side,
$ \Rightarrow {\gamma ^2} = - \left( {2{{\cos }^2}\theta - 1} \right)$
Substitute the value $\cos 2\theta = 2{\cos ^2}\theta - 1$,
$\therefore {\gamma ^2} = - \cos 2\theta $..........….. (11)
Compare equation (10) and (11),
$ \Rightarrow 1 - 2{\alpha ^2} = - \cos 2\theta $
Substitute the value $\beta $ in place of $\alpha $,
$ \Rightarrow 1 - 2{\beta ^2} = - \cos 2\theta $
Simplify the terms,
$ \Rightarrow 2{\beta ^2} = 1 + \cos 2\theta $
Divide both sides by 2,
$\therefore {\beta ^2} = \dfrac{{1 + \cos 2\theta }}{2}$
Hence, option (a), (b), (c) and (d) all are correct.
Note: A vector is an object that has both magnitude and direction. The students must know the difference between the dot product and cross product. The dot product results in a scalar quantity whereas the cross-product results in a vector only.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

