Answer

Verified

429.3k+ views

**Hint:**Let two thin lenses ${{L}_{1}}\text{ and }{{L}_{2}}$ of focal lengths ${{f}_{1}}\text{ and }{{f}_{2}}$ be placed in contact so as to have a common principal axis. It is required to find the effective focal length of this combination. Let O be a point object on the principal axis.

**Complete step by step answer:**

In the above figure two lenses are kept in contact and image is traced. We will solve accordingly to find the new focal length obtained by the two.

We know that the refraction through the two lenses are considered separately and the results are combined. While dealing with the individual lenses, the distances are to be measured from the respective optic centres. Since the lenses are thin, these distances can also be measured from the centre of the lens system (point of contact in the case of two lenses).

Let u be the distance of O from the centre of the lens system. Assuming that the lens ${{L}_{1}}$alone produces the refraction.

Let the image be formed at I at a distance v.

Writing the lens equation in this case. We get

$\Rightarrow \dfrac{1}{u}+\dfrac{1}{v'}=\dfrac{1}{{{f}_{1}}}$

The image I’ due to the first lens acts on the virtual object for the second lens. Let the final image be formed at I, at a distance v from the centre of the lens system. Writing the lens equation in this case, we get

\[\Rightarrow \dfrac{1}{-v'}+\dfrac{1}{v}=\dfrac{1}{{{f}_{2}}}\]

Adding equations in both the cases we get

\[\begin{align}

& \dfrac{1}{u}+\dfrac{1}{v'}-\dfrac{1}{v'}+\dfrac{1}{v}=\dfrac{1}{{{f}_{1}}}+\dfrac{1}{{{f}_{2}}} \\

& \dfrac{1}{u}+\dfrac{1}{v}=\dfrac{1}{{{f}_{1}}}+\dfrac{1}{{{f}_{2}}}.............1 \\

\end{align}\]

Let the two lenses be replaced by a single lens which can produce the same effect as the two lenses put together produce, i.e., for an object O placed at a distance u from it, the image I must be formed at a distance v. such a lens is called an equivalent lens and its focal length is called the equivalent focal length.

Writing the lens equation in this case, we get

\[\Rightarrow \dfrac{1}{u}-\dfrac{1}{v}=\dfrac{1}{f}............2\]

Comparing equations (1) and (2) we get

$\Rightarrow \dfrac{1}{F}=\dfrac{1}{{{f}_{1}}}+\dfrac{1}{{{f}_{2}}}$

The below given figure shows that combination of two lenses will behave as a single lens having focal length equal to the sum of the reciprocals of the individual focal lengths.

Hence, when thin lenses are combined, the reciprocal of the effective focal length will be equal to the sum of the reciprocals of the individual focal lengths.

**Note:**

We use a combination of lenses to increase the sharpness of the final image by minimising certain defects or aberrations in it. Minimising certain defects or aberrations in it. To erect the final image. We also use it to increase the field of view.

Recently Updated Pages

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

Trending doubts

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Difference Between Plant Cell and Animal Cell

10 examples of evaporation in daily life with explanations

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

How do you graph the function fx 4x class 9 maths CBSE