Answer
Verified
411.6k+ views
Hint: Let A be a invertible square matrix (invertible if its determinant value is a non-zero number), then its inverse matrix \[{{A}^{-1}}\] will be equal to the adjoint matrix of A
(which is transpose of cofactor matrix) divided by its determinant value, i.e., \[{{A}^{-1}}=\dfrac{1}{|A|}(adj(A))\]. Let X be a variable matrix, then for AX=B where B is also a matrix, we can find the value of variables of matrix X by the equation \[\Rightarrow X={{A}^{-1}}B\].
Complete step-by-step solution:
Let the numbers x, y and z be the prize amount per person for sincerity, truthfulness and helpfulness respectively.
As per the given question, we can write
3x + 2y + z = 1600
4x + y + 3z = 2300
x + y + z = 900
From these three equations, we can write in matrix form
\[\left[ \begin{matrix}
3 & 2 & 1 \\
4 & 1 & 3 \\
1 & 1 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
1600 \\
2300 \\
900 \\
\end{matrix} \right]\]
i.e., AX=B
hence, we get the solution from \[\Rightarrow X={{A}^{-1}}B\].
Now let’s find the determinant of A,
|A|=3(1 – 3) – 2(4 – 3) + 1(4 – 1)
= - 6 – 2 + 3 = -5
\[\Rightarrow |A|=-5\]
Now, we find the cofactors:
\[{{C}_{11}}={{(-1)}^{1+1}}\left| \begin{matrix}
1 & 3 \\
1 & 1 \\
\end{matrix} \right|=1-3=-2\]
\[{{C}_{12}}={{(-1)}^{1+2}}\left| \begin{matrix}
4 & 3 \\
1 & 1 \\
\end{matrix} \right|=-(4-3)=-1\]
\[{{C}_{13}}={{(-1)}^{1+3}}\left| \begin{matrix}
4 & 1 \\
1 & 1 \\
\end{matrix} \right|=(4-1)=3\]
\[{{C}_{21}}={{(-1)}^{2+1}}\left| \begin{matrix}
2 & 1 \\
1 & 1 \\
\end{matrix} \right|=-(2-1)=-1\]
\[{{C}_{22}}={{(-1)}^{2+2}}\left| \begin{matrix}
3 & 1 \\
1 & 1 \\
\end{matrix} \right|=(3-1)=2\]
\[{{C}_{23}}={{(-1)}^{2+3}}\left| \begin{matrix}
3 & 2 \\
1 & 1 \\
\end{matrix} \right|=-(3-2)=-1\]
\[{{C}_{31}}={{(-1)}^{3+1}}\left| \begin{matrix}
2 & 1 \\
1 & 3 \\
\end{matrix} \right|=(6-1)=5\]
\[{{C}_{32}}={{(-1)}^{3+2}}\left| \begin{matrix}
3 & 1 \\
4 & 3 \\
\end{matrix} \right|=-(9-4)=-5\]
\[{{C}_{33}}={{(-1)}^{3+3}}\left| \begin{matrix}
3 & 2 \\
4 & 1 \\
\end{matrix} \right|=3-8=-5\]
Adj(A) = \[{{\left[ \begin{matrix}
-2 & -1 & 3 \\
-1 & 2 & -1 \\
5 & -5 & -5 \\
\end{matrix} \right]}^{T}}\]
=\[\left[ \begin{matrix}
-2 & -1 & 5 \\
-1 & 2 & -5 \\
3 & -1 & -5 \\
\end{matrix} \right]\]
Then we write,
\[X={{A}^{-1}}B=\dfrac{1}{|A|}(adj(A))B\]
\[\begin{align}
& X=-\dfrac{1}{5}\left[ \begin{matrix}
-2 & -1 & 5 \\
-1 & 2 & -5 \\
3 & -1 & -5 \\
\end{matrix} \right]\left[ \begin{matrix}
1600 \\
2300 \\
900 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
640+460-900 \\
-320-920+900 \\
-960+460+900 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
200 \\
300 \\
400 \\
\end{matrix} \right] \\
\end{align}\]
Hence, x=200, y=300 and z=400 are the values of the amount awarded.
Note: Here the word value means excellence in extracurricular activities should be another value considered for an award. While solving such problems, we generally make mistakes in considering \[{{(-1)}^{i+j}}\] in calculation of cofactors. We must make sure that we take the transpose of the cofactor matrix.
(which is transpose of cofactor matrix) divided by its determinant value, i.e., \[{{A}^{-1}}=\dfrac{1}{|A|}(adj(A))\]. Let X be a variable matrix, then for AX=B where B is also a matrix, we can find the value of variables of matrix X by the equation \[\Rightarrow X={{A}^{-1}}B\].
Complete step-by-step solution:
Let the numbers x, y and z be the prize amount per person for sincerity, truthfulness and helpfulness respectively.
As per the given question, we can write
3x + 2y + z = 1600
4x + y + 3z = 2300
x + y + z = 900
From these three equations, we can write in matrix form
\[\left[ \begin{matrix}
3 & 2 & 1 \\
4 & 1 & 3 \\
1 & 1 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
1600 \\
2300 \\
900 \\
\end{matrix} \right]\]
i.e., AX=B
hence, we get the solution from \[\Rightarrow X={{A}^{-1}}B\].
Now let’s find the determinant of A,
|A|=3(1 – 3) – 2(4 – 3) + 1(4 – 1)
= - 6 – 2 + 3 = -5
\[\Rightarrow |A|=-5\]
Now, we find the cofactors:
\[{{C}_{11}}={{(-1)}^{1+1}}\left| \begin{matrix}
1 & 3 \\
1 & 1 \\
\end{matrix} \right|=1-3=-2\]
\[{{C}_{12}}={{(-1)}^{1+2}}\left| \begin{matrix}
4 & 3 \\
1 & 1 \\
\end{matrix} \right|=-(4-3)=-1\]
\[{{C}_{13}}={{(-1)}^{1+3}}\left| \begin{matrix}
4 & 1 \\
1 & 1 \\
\end{matrix} \right|=(4-1)=3\]
\[{{C}_{21}}={{(-1)}^{2+1}}\left| \begin{matrix}
2 & 1 \\
1 & 1 \\
\end{matrix} \right|=-(2-1)=-1\]
\[{{C}_{22}}={{(-1)}^{2+2}}\left| \begin{matrix}
3 & 1 \\
1 & 1 \\
\end{matrix} \right|=(3-1)=2\]
\[{{C}_{23}}={{(-1)}^{2+3}}\left| \begin{matrix}
3 & 2 \\
1 & 1 \\
\end{matrix} \right|=-(3-2)=-1\]
\[{{C}_{31}}={{(-1)}^{3+1}}\left| \begin{matrix}
2 & 1 \\
1 & 3 \\
\end{matrix} \right|=(6-1)=5\]
\[{{C}_{32}}={{(-1)}^{3+2}}\left| \begin{matrix}
3 & 1 \\
4 & 3 \\
\end{matrix} \right|=-(9-4)=-5\]
\[{{C}_{33}}={{(-1)}^{3+3}}\left| \begin{matrix}
3 & 2 \\
4 & 1 \\
\end{matrix} \right|=3-8=-5\]
Adj(A) = \[{{\left[ \begin{matrix}
-2 & -1 & 3 \\
-1 & 2 & -1 \\
5 & -5 & -5 \\
\end{matrix} \right]}^{T}}\]
=\[\left[ \begin{matrix}
-2 & -1 & 5 \\
-1 & 2 & -5 \\
3 & -1 & -5 \\
\end{matrix} \right]\]
Then we write,
\[X={{A}^{-1}}B=\dfrac{1}{|A|}(adj(A))B\]
\[\begin{align}
& X=-\dfrac{1}{5}\left[ \begin{matrix}
-2 & -1 & 5 \\
-1 & 2 & -5 \\
3 & -1 & -5 \\
\end{matrix} \right]\left[ \begin{matrix}
1600 \\
2300 \\
900 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
640+460-900 \\
-320-920+900 \\
-960+460+900 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
200 \\
300 \\
400 \\
\end{matrix} \right] \\
\end{align}\]
Hence, x=200, y=300 and z=400 are the values of the amount awarded.
Note: Here the word value means excellence in extracurricular activities should be another value considered for an award. While solving such problems, we generally make mistakes in considering \[{{(-1)}^{i+j}}\] in calculation of cofactors. We must make sure that we take the transpose of the cofactor matrix.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Difference Between Plant Cell and Animal Cell
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE