
Two point charges $ 4 \times {10^{ - 6}}C $ and $ 2 \times {10^{ - 6}}C $ are placed at the vertices $ A $ and $ B $ of a right angled triangle $ ABC $ respectively. $ B $ is the right angle, $ AC = 2 \times {10^{ - 2}}m $ and $ BC = {10^{ - 2}}m $ . Find the magnitude and direction of resultant electric intensity at $ C $ ?
Answer
473.4k+ views
Hint: To solve this question first we will draw the diagram and we will find the electric field at point $ A $ by using the formula and similarly at point $ B $ after that we will find the angle $ \theta $ because without $ \theta $ we will not be able to find the resultant magnitude and then we will use the vector sum to find the net resultant and after to find the direction means we have to find $ \tan \alpha $ after finding we will get our required solution.
Magnitude of the electric field is given by:
$ E = \dfrac{{kq}}{{{r^2}}} $
Where,
$ k $ is electrostatic constant and its value is $ 9 \times {10^9} $ ,
$ q $ is the charge and
$ r $ is the distance.
Complete answer:
According to the question,
Charge at point $ A $ is $ 4 \times {10^{ - 6}}C $ and
Charge at point $ B $ is $ 2 \times {10^{ - 6}}C $ .
Length, $ AC = 2 \times {10^{ - 2}}m $ and
Length, $ BC = {10^{ - 2}}m $ .
So, the electric field at point $ A $ is given by,
$ E = \dfrac{{kq}}{{{r^2}}} $
Now, substituting the above given values and solving,
$
{E_A} = \dfrac{{9 \times {{10}^9} \times 4 \times {{10}^{ - 6}}}}{{{{\left( {2 \times {{10}^{ - 2}}m} \right)}^2}}} \\
\Rightarrow {E_A} = \dfrac{{9 \times {{10}^9} \times 4 \times {{10}^{ - 6}}}}{{4 \times {{10}^{ - 4}}}} \\
\Rightarrow {E_A} = 9 \times {10^7}N{\text{ }}{C^{ - 1}} \\
$
Similarly, the electric field at point $ B $ is given by,
$ E = \dfrac{{kq}}{{{r^2}}} $
Now, substituting the above given values and solving,
$
{E_B} = \dfrac{{9 \times {{10}^9} \times 2 \times {{10}^{ - 6}}}}{{{{\left( {{{10}^{ - 2}}m} \right)}^2}}} \\
\Rightarrow {E_B} = \dfrac{{9 \times {{10}^9} \times 2 \times {{10}^{ - 6}}}}{{{{10}^{ - 4}}}} \\
\Rightarrow {E_B} = 18 \times {10^7}N{\text{ }}{C^{ - 1}} \\
$
Now, we have to calculate the magnitude of resultant electric intensity at $ C $
To find this first we have to find the angle $ \theta $ .
In $ \vartriangle ABC $
$ \cos \theta = \dfrac{{{{10}^{ - 2}}}}{{2 \times {{10}^{ - 2}}}} = \dfrac{1}{2} $
And we know that, $ \cos {60^ \circ } = \dfrac{1}{2} $
Therefore, $ \theta = {60^ \circ } $
Now, applying vector law of addition to find the magnitude,
$ E = \sqrt {{E_A} + {E_B} + 2{E_A}{E_B}\cos \theta } $
Now, substituting all the values in above formula,
$
E = \sqrt {{E_A} + {E_B} + 2{E_A}{E_B}\cos \theta } \\
\Rightarrow E = \sqrt {{{\left( {9 \times {{10}^7}} \right)}^2} + {{\left( {18 \times {{10}^7}} \right)}^2} + \left\{ {2 \times 9 \times {{10}^7} \times 18 \times {{10}^7}\left( {\dfrac{1}{2}} \right)} \right\}} \\
\Rightarrow E = \sqrt {81 \times {{10}^{14}} + 324 \times {{10}^{14}} + 162 \times {{10}^{14}}} \\
$
On further solving,
$
E = \sqrt {81 \times {{10}^{14}} + 324 \times {{10}^{14}} + 162 \times {{10}^{14}}} \\
\Rightarrow E = \sqrt {547 \times {{10}^{14}}} \\
\Rightarrow E = 2.38 \times {10^8}N{\text{ }}{C^{ - 1}} \\
$
So, the magnitude of resultant electric intensity at $ C $ is $ 2.38 \times {10^8}N{\text{ }}{C^{ - 1}} $ .
Now, we have to find the direction of the electric field at point $ C $ .
Which, is nothing but $ \tan \alpha $
And is given by,
$ \tan \alpha = \dfrac{{{E_B}\sin \theta }}{{{E_A} + {E_B}\cos \theta }} $
Now, substituting the values and solving we get,
$
\tan \alpha = \dfrac{{18 \times {{10}^7}\sin {{60}^ \circ }}}{{9 \times {{10}^7} + 18 \times {{10}^7}\cos {{60}^ \circ }}} \\
\Rightarrow \tan \alpha = \dfrac{{18 \times {{10}^7} \times \dfrac{{\sqrt 3 }}{2}}}{{9 \times {{10}^7} + 9 \times {{10}^7}}} \\
\Rightarrow \tan \alpha = \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow \alpha = {40.9^ \circ } \\
$
Hence, the magnitude and direction of resultant electric intensity at $ C $ is $ 2.38 \times {10^8}N{\text{ }}{C^{ - 1}} $ and $ {40.9^ \circ } $ respectively.
Note:
It's important to remember that the electric field is defined as the force per unit of charge. Coulomb's Law states that the force between two charged particles is directly proportional to the charges and inversely proportional to the square of the distance between the charged particles, hence this value of electric field can be calculated. Keep in mind that in the case of positive charge, the electric field is radially outward, whereas in the case of negative charge, it is radially inward.
Magnitude of the electric field is given by:
$ E = \dfrac{{kq}}{{{r^2}}} $
Where,
$ k $ is electrostatic constant and its value is $ 9 \times {10^9} $ ,
$ q $ is the charge and
$ r $ is the distance.
Complete answer:
According to the question,
Charge at point $ A $ is $ 4 \times {10^{ - 6}}C $ and
Charge at point $ B $ is $ 2 \times {10^{ - 6}}C $ .
Length, $ AC = 2 \times {10^{ - 2}}m $ and
Length, $ BC = {10^{ - 2}}m $ .
So, the electric field at point $ A $ is given by,
$ E = \dfrac{{kq}}{{{r^2}}} $
Now, substituting the above given values and solving,
$
{E_A} = \dfrac{{9 \times {{10}^9} \times 4 \times {{10}^{ - 6}}}}{{{{\left( {2 \times {{10}^{ - 2}}m} \right)}^2}}} \\
\Rightarrow {E_A} = \dfrac{{9 \times {{10}^9} \times 4 \times {{10}^{ - 6}}}}{{4 \times {{10}^{ - 4}}}} \\
\Rightarrow {E_A} = 9 \times {10^7}N{\text{ }}{C^{ - 1}} \\
$
Similarly, the electric field at point $ B $ is given by,
$ E = \dfrac{{kq}}{{{r^2}}} $
Now, substituting the above given values and solving,
$
{E_B} = \dfrac{{9 \times {{10}^9} \times 2 \times {{10}^{ - 6}}}}{{{{\left( {{{10}^{ - 2}}m} \right)}^2}}} \\
\Rightarrow {E_B} = \dfrac{{9 \times {{10}^9} \times 2 \times {{10}^{ - 6}}}}{{{{10}^{ - 4}}}} \\
\Rightarrow {E_B} = 18 \times {10^7}N{\text{ }}{C^{ - 1}} \\
$
Now, we have to calculate the magnitude of resultant electric intensity at $ C $
To find this first we have to find the angle $ \theta $ .
In $ \vartriangle ABC $
$ \cos \theta = \dfrac{{{{10}^{ - 2}}}}{{2 \times {{10}^{ - 2}}}} = \dfrac{1}{2} $
And we know that, $ \cos {60^ \circ } = \dfrac{1}{2} $
Therefore, $ \theta = {60^ \circ } $
Now, applying vector law of addition to find the magnitude,
$ E = \sqrt {{E_A} + {E_B} + 2{E_A}{E_B}\cos \theta } $
Now, substituting all the values in above formula,
$
E = \sqrt {{E_A} + {E_B} + 2{E_A}{E_B}\cos \theta } \\
\Rightarrow E = \sqrt {{{\left( {9 \times {{10}^7}} \right)}^2} + {{\left( {18 \times {{10}^7}} \right)}^2} + \left\{ {2 \times 9 \times {{10}^7} \times 18 \times {{10}^7}\left( {\dfrac{1}{2}} \right)} \right\}} \\
\Rightarrow E = \sqrt {81 \times {{10}^{14}} + 324 \times {{10}^{14}} + 162 \times {{10}^{14}}} \\
$
On further solving,
$
E = \sqrt {81 \times {{10}^{14}} + 324 \times {{10}^{14}} + 162 \times {{10}^{14}}} \\
\Rightarrow E = \sqrt {547 \times {{10}^{14}}} \\
\Rightarrow E = 2.38 \times {10^8}N{\text{ }}{C^{ - 1}} \\
$
So, the magnitude of resultant electric intensity at $ C $ is $ 2.38 \times {10^8}N{\text{ }}{C^{ - 1}} $ .
Now, we have to find the direction of the electric field at point $ C $ .
Which, is nothing but $ \tan \alpha $
And is given by,
$ \tan \alpha = \dfrac{{{E_B}\sin \theta }}{{{E_A} + {E_B}\cos \theta }} $
Now, substituting the values and solving we get,
$
\tan \alpha = \dfrac{{18 \times {{10}^7}\sin {{60}^ \circ }}}{{9 \times {{10}^7} + 18 \times {{10}^7}\cos {{60}^ \circ }}} \\
\Rightarrow \tan \alpha = \dfrac{{18 \times {{10}^7} \times \dfrac{{\sqrt 3 }}{2}}}{{9 \times {{10}^7} + 9 \times {{10}^7}}} \\
\Rightarrow \tan \alpha = \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow \alpha = {40.9^ \circ } \\
$
Hence, the magnitude and direction of resultant electric intensity at $ C $ is $ 2.38 \times {10^8}N{\text{ }}{C^{ - 1}} $ and $ {40.9^ \circ } $ respectively.
Note:
It's important to remember that the electric field is defined as the force per unit of charge. Coulomb's Law states that the force between two charged particles is directly proportional to the charges and inversely proportional to the square of the distance between the charged particles, hence this value of electric field can be calculated. Keep in mind that in the case of positive charge, the electric field is radially outward, whereas in the case of negative charge, it is radially inward.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

