
Two masses ${{m}_{1}}$ and ${{m}_{2}}$, ${{m}_{1}}>{{m}_{2}}$ move in circular paths under the action of their gravitational attraction. While doing so, their separation remains constant and equals $'r'$. Radius of circular path of ${{m}_{2}}$ is:
(A). $\dfrac{r}{2}$
(B). $\dfrac{{{m}_{1}}}{{{m}_{2}}}r$
(C). $\dfrac{{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}}r$
(D). $\dfrac{{{m}_{1}}}{{{m}_{1}}+{{m}_{2}}}r$
Answer
547.2k+ views
Hint: Two particles revolve around a point due to the mutual gravitational force of attraction. This means they are revolving around their centre of mass. The radius of their circular paths is the distance from the centre of mass. The centre of mass will be at a point where mass distribution is constant.
Formulas used:
${{m}_{1}}{{r}_{1}}={{m}_{2}}{{r}_{2}}$
$d={{r}_{1}}+{{r}_{2}}$
Complete step-by-step solution:
Since the particles are moving under the action of mutual gravitational attraction, they are revolving around their centre of mass.
The centre of mass of a system is the point at which the whole mass of the system is assumed to be concentrated.
The separation between the masses is given as $r$
From the above figure,
$d={{r}_{1}}+{{r}_{2}}$ - (1)
Here, ${{r}_{1}}$ is the radius of ${{m}_{1}}$ or its distance from centre of mass
${{r}_{2}}$ is the radius of particle ${{m}_{2}}$ or its distance from centre of mass
Since, the mass of one particle is greater than the other mass distribution is not equal. The centre of mass will be closer to the bigger mass.
The centre of mass will be at a point where,
${{m}_{1}}{{r}_{1}}={{m}_{2}}{{r}_{2}}$
$\Rightarrow {{r}_{2}}=\dfrac{{{m}_{1}}}{{{m}_{2}}}{{r}_{1}}$ - (2)
From eq (1), we have,
$\begin{align}
& d={{r}_{1}}+{{r}_{2}} \\
& \Rightarrow {{r}_{1}}=d-{{r}_{2}} \\
\end{align}$
Substituting in eq (2), from the above equation, we get,
$\begin{align}
& {{r}_{2}}=\dfrac{{{m}_{1}}}{{{m}_{2}}}(d-{{r}_{2}}) \\
& \Rightarrow {{r}_{2}}=d\dfrac{{{m}_{1}}}{{{m}_{2}}}-{{r}_{2}}\dfrac{{{m}_{1}}}{{{m}_{2}}} \\
& \Rightarrow {{r}_{2}}(1+\dfrac{{{m}_{1}}}{{{m}_{2}}})=d\dfrac{{{m}_{1}}}{{{m}_{2}}} \\
& \Rightarrow {{r}_{2}}(\dfrac{{{m}_{1}}+{{m}_{2}}}{{{m}_{2}}})=d\dfrac{{{m}_{1}}}{{{m}_{2}}} \\
& \therefore {{r}_{2}}=\dfrac{{{m}_{1}}}{{{m}_{1}}+{{m}_{2}}}d \\
\end{align}$
Therefore, the magnitude of the radius or the distance from the centre of mass of ${{m}_{2}}$ is $\dfrac{{{m}_{1}}}{{{m}_{1}}+{{m}_{2}}}d$.
Hence, the correct option is (D).
Note:
The nature of gravitational forces is always attractive. The position of centre of mass depends on the distribution of mass of the system. If both masses were equal, the centre of mass would be in the centre. The radius of the particles of the system is inversely proportional to their masses.
Formulas used:
${{m}_{1}}{{r}_{1}}={{m}_{2}}{{r}_{2}}$
$d={{r}_{1}}+{{r}_{2}}$
Complete step-by-step solution:
Since the particles are moving under the action of mutual gravitational attraction, they are revolving around their centre of mass.
The centre of mass of a system is the point at which the whole mass of the system is assumed to be concentrated.
The separation between the masses is given as $r$
From the above figure,
$d={{r}_{1}}+{{r}_{2}}$ - (1)
Here, ${{r}_{1}}$ is the radius of ${{m}_{1}}$ or its distance from centre of mass
${{r}_{2}}$ is the radius of particle ${{m}_{2}}$ or its distance from centre of mass
Since, the mass of one particle is greater than the other mass distribution is not equal. The centre of mass will be closer to the bigger mass.
The centre of mass will be at a point where,
${{m}_{1}}{{r}_{1}}={{m}_{2}}{{r}_{2}}$
$\Rightarrow {{r}_{2}}=\dfrac{{{m}_{1}}}{{{m}_{2}}}{{r}_{1}}$ - (2)
From eq (1), we have,
$\begin{align}
& d={{r}_{1}}+{{r}_{2}} \\
& \Rightarrow {{r}_{1}}=d-{{r}_{2}} \\
\end{align}$
Substituting in eq (2), from the above equation, we get,
$\begin{align}
& {{r}_{2}}=\dfrac{{{m}_{1}}}{{{m}_{2}}}(d-{{r}_{2}}) \\
& \Rightarrow {{r}_{2}}=d\dfrac{{{m}_{1}}}{{{m}_{2}}}-{{r}_{2}}\dfrac{{{m}_{1}}}{{{m}_{2}}} \\
& \Rightarrow {{r}_{2}}(1+\dfrac{{{m}_{1}}}{{{m}_{2}}})=d\dfrac{{{m}_{1}}}{{{m}_{2}}} \\
& \Rightarrow {{r}_{2}}(\dfrac{{{m}_{1}}+{{m}_{2}}}{{{m}_{2}}})=d\dfrac{{{m}_{1}}}{{{m}_{2}}} \\
& \therefore {{r}_{2}}=\dfrac{{{m}_{1}}}{{{m}_{1}}+{{m}_{2}}}d \\
\end{align}$
Therefore, the magnitude of the radius or the distance from the centre of mass of ${{m}_{2}}$ is $\dfrac{{{m}_{1}}}{{{m}_{1}}+{{m}_{2}}}d$.
Hence, the correct option is (D).
Note:
The nature of gravitational forces is always attractive. The position of centre of mass depends on the distribution of mass of the system. If both masses were equal, the centre of mass would be in the centre. The radius of the particles of the system is inversely proportional to their masses.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

