
Two lines \[{L_1}:x = 5,\dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and \[{L_2}:x = \alpha ,\dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}\] are coplanar. Then \[\alpha \] can take value(s)
This question has multiple correct options
A. 1
B. 2
C. 3
D. 4
Answer
570.9k+ views
Hint: In this question we will proceed by rewriting the given lines into their standard equation form. Then use the condition of coplanarity for two lines to be in coplanar to get the required values of \[\alpha \].
Complete step by step answer:
Given lines are \[{L_1}:x = 5,\dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and \[{L_2}:x = \alpha ,\dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}\]
Here we can rewrite lines \[{L_1}\] as \[{L_1}:\dfrac{{x - 5}}{0} = \dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and the line \[{L_2}\] as \[{L_2}:\dfrac{{x - \alpha }}{0} = \dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}\] in the standard form.
We know that the condition of the two lines \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] to be coplanar is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Since the given lines \[{L_1}\] and \[{L_2}\]are coplanar, according to the condition of coplanarity we have
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 5}&y&z \\
0&{3 - \alpha }&{ - 2} \\
0&{ - 1}&{2 - \alpha }
\end{array}} \right| = 0\]
Opening the determinant with first column, we get
\[
\Rightarrow x - 5\left[ {\left( {3 - \alpha } \right)\left( {2 - \alpha } \right) - \left( { - 2} \right)\left( { - 1} \right)} \right] - 0\left[ {y\left( {2 - \alpha } \right) - \left( { - 1} \right)\left( z \right)} \right] + 0\left[ {y\left( { - 2} \right) - z\left( { - 1} \right)} \right] = 0 \\
\Rightarrow x - 5\left[ {\left( {{\alpha ^2} - 5\alpha + 6} \right) - 2} \right] - 0 + 0 = 0 \\
\Rightarrow x - 5\left( {{\alpha ^2} - 5\alpha + 6 - 2} \right) = 0 \\
\Rightarrow {\alpha ^2} - 5\alpha + 4 = \dfrac{0}{{x - 5}} \\
\Rightarrow {\alpha ^2} - 5\alpha + 4 = 0 \\
\]
Splitting the terms and taking common, we have
\[
\Rightarrow {\alpha ^2} - \alpha - 4\alpha + 4 = 0 \\
\Rightarrow \alpha \left( {\alpha - 1} \right) - 4\left( {\alpha - 1} \right) = 0 \\
\Rightarrow \left( {\alpha - 1} \right)\left( {\alpha - 4} \right) = 0 \\
\therefore \alpha = 1,{\text{4}} \\
\]
Therefore, the values of \[\alpha \] are 1 and 4.
Thus, the correct options are A and D.
Note:
The condition that the two lines in three-dimensional \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] to be coplanar is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Complete step by step answer:
Given lines are \[{L_1}:x = 5,\dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and \[{L_2}:x = \alpha ,\dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}\]
Here we can rewrite lines \[{L_1}\] as \[{L_1}:\dfrac{{x - 5}}{0} = \dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and the line \[{L_2}\] as \[{L_2}:\dfrac{{x - \alpha }}{0} = \dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}\] in the standard form.
We know that the condition of the two lines \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] to be coplanar is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Since the given lines \[{L_1}\] and \[{L_2}\]are coplanar, according to the condition of coplanarity we have
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 5}&y&z \\
0&{3 - \alpha }&{ - 2} \\
0&{ - 1}&{2 - \alpha }
\end{array}} \right| = 0\]
Opening the determinant with first column, we get
\[
\Rightarrow x - 5\left[ {\left( {3 - \alpha } \right)\left( {2 - \alpha } \right) - \left( { - 2} \right)\left( { - 1} \right)} \right] - 0\left[ {y\left( {2 - \alpha } \right) - \left( { - 1} \right)\left( z \right)} \right] + 0\left[ {y\left( { - 2} \right) - z\left( { - 1} \right)} \right] = 0 \\
\Rightarrow x - 5\left[ {\left( {{\alpha ^2} - 5\alpha + 6} \right) - 2} \right] - 0 + 0 = 0 \\
\Rightarrow x - 5\left( {{\alpha ^2} - 5\alpha + 6 - 2} \right) = 0 \\
\Rightarrow {\alpha ^2} - 5\alpha + 4 = \dfrac{0}{{x - 5}} \\
\Rightarrow {\alpha ^2} - 5\alpha + 4 = 0 \\
\]
Splitting the terms and taking common, we have
\[
\Rightarrow {\alpha ^2} - \alpha - 4\alpha + 4 = 0 \\
\Rightarrow \alpha \left( {\alpha - 1} \right) - 4\left( {\alpha - 1} \right) = 0 \\
\Rightarrow \left( {\alpha - 1} \right)\left( {\alpha - 4} \right) = 0 \\
\therefore \alpha = 1,{\text{4}} \\
\]
Therefore, the values of \[\alpha \] are 1 and 4.
Thus, the correct options are A and D.
Note:
The condition that the two lines in three-dimensional \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] to be coplanar is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

