
Two lines \[{L_1}:x = 5,\dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and \[{L_2}:x = \alpha ,\dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}\] are coplanar. Then \[\alpha \] can take value(s)
This question has multiple correct options
A. 1
B. 2
C. 3
D. 4
Answer
520.2k+ views
Hint: In this question we will proceed by rewriting the given lines into their standard equation form. Then use the condition of coplanarity for two lines to be in coplanar to get the required values of \[\alpha \].
Complete step by step answer:
Given lines are \[{L_1}:x = 5,\dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and \[{L_2}:x = \alpha ,\dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}\]
Here we can rewrite lines \[{L_1}\] as \[{L_1}:\dfrac{{x - 5}}{0} = \dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and the line \[{L_2}\] as \[{L_2}:\dfrac{{x - \alpha }}{0} = \dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}\] in the standard form.
We know that the condition of the two lines \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] to be coplanar is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Since the given lines \[{L_1}\] and \[{L_2}\]are coplanar, according to the condition of coplanarity we have
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 5}&y&z \\
0&{3 - \alpha }&{ - 2} \\
0&{ - 1}&{2 - \alpha }
\end{array}} \right| = 0\]
Opening the determinant with first column, we get
\[
\Rightarrow x - 5\left[ {\left( {3 - \alpha } \right)\left( {2 - \alpha } \right) - \left( { - 2} \right)\left( { - 1} \right)} \right] - 0\left[ {y\left( {2 - \alpha } \right) - \left( { - 1} \right)\left( z \right)} \right] + 0\left[ {y\left( { - 2} \right) - z\left( { - 1} \right)} \right] = 0 \\
\Rightarrow x - 5\left[ {\left( {{\alpha ^2} - 5\alpha + 6} \right) - 2} \right] - 0 + 0 = 0 \\
\Rightarrow x - 5\left( {{\alpha ^2} - 5\alpha + 6 - 2} \right) = 0 \\
\Rightarrow {\alpha ^2} - 5\alpha + 4 = \dfrac{0}{{x - 5}} \\
\Rightarrow {\alpha ^2} - 5\alpha + 4 = 0 \\
\]
Splitting the terms and taking common, we have
\[
\Rightarrow {\alpha ^2} - \alpha - 4\alpha + 4 = 0 \\
\Rightarrow \alpha \left( {\alpha - 1} \right) - 4\left( {\alpha - 1} \right) = 0 \\
\Rightarrow \left( {\alpha - 1} \right)\left( {\alpha - 4} \right) = 0 \\
\therefore \alpha = 1,{\text{4}} \\
\]
Therefore, the values of \[\alpha \] are 1 and 4.
Thus, the correct options are A and D.
Note:
The condition that the two lines in three-dimensional \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] to be coplanar is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Complete step by step answer:
Given lines are \[{L_1}:x = 5,\dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and \[{L_2}:x = \alpha ,\dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}\]
Here we can rewrite lines \[{L_1}\] as \[{L_1}:\dfrac{{x - 5}}{0} = \dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and the line \[{L_2}\] as \[{L_2}:\dfrac{{x - \alpha }}{0} = \dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}\] in the standard form.
We know that the condition of the two lines \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] to be coplanar is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Since the given lines \[{L_1}\] and \[{L_2}\]are coplanar, according to the condition of coplanarity we have
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 5}&y&z \\
0&{3 - \alpha }&{ - 2} \\
0&{ - 1}&{2 - \alpha }
\end{array}} \right| = 0\]
Opening the determinant with first column, we get
\[
\Rightarrow x - 5\left[ {\left( {3 - \alpha } \right)\left( {2 - \alpha } \right) - \left( { - 2} \right)\left( { - 1} \right)} \right] - 0\left[ {y\left( {2 - \alpha } \right) - \left( { - 1} \right)\left( z \right)} \right] + 0\left[ {y\left( { - 2} \right) - z\left( { - 1} \right)} \right] = 0 \\
\Rightarrow x - 5\left[ {\left( {{\alpha ^2} - 5\alpha + 6} \right) - 2} \right] - 0 + 0 = 0 \\
\Rightarrow x - 5\left( {{\alpha ^2} - 5\alpha + 6 - 2} \right) = 0 \\
\Rightarrow {\alpha ^2} - 5\alpha + 4 = \dfrac{0}{{x - 5}} \\
\Rightarrow {\alpha ^2} - 5\alpha + 4 = 0 \\
\]
Splitting the terms and taking common, we have
\[
\Rightarrow {\alpha ^2} - \alpha - 4\alpha + 4 = 0 \\
\Rightarrow \alpha \left( {\alpha - 1} \right) - 4\left( {\alpha - 1} \right) = 0 \\
\Rightarrow \left( {\alpha - 1} \right)\left( {\alpha - 4} \right) = 0 \\
\therefore \alpha = 1,{\text{4}} \\
\]
Therefore, the values of \[\alpha \] are 1 and 4.
Thus, the correct options are A and D.
Note:
The condition that the two lines in three-dimensional \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] to be coplanar is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
