
Two boats P and Q move away from a buoy anchored at the middle of a river along the mutually perpendicular straight lines, the boat P along the river and the boat Q across the river. Having moved off an equal distance from the buoy the boats returned. If the velocity of each boat with respect to water is 1.2 times greater than the stream velocity find the ratio of times of motion of boats $\dfrac{{{T}_{P}}}{{{T}_{Q}}}$ after rounding off.
Answer
557.7k+ views
Hint: When a boat moves across a river, it experiences both upstream and downstream motion. Hence along with taking the velocity of the stream as well. The upstream velocity is to be added and the downstream velocity is to be subtracted.
Complete step by step solution:
We’re given that both the boats travel equal distances in perpendicular directions. Let the distance be d.
Consider the stream velocity be ${{V}_{R}}$
Relative velocity of Q with respect to river is the same as that of P’s relative velocity with respect to river. Let it be ${{V}_{r}}$
We’re also given that $\dfrac{{{V}_{r}}}{{{V}_{R}}}=1.2$
Forward motion of Q:
\[{{\overrightarrow{V}}_{Q/R}}={{\overrightarrow{V}}_{r}}=-{{V}_{r}}\sin \theta \hat{i}+{{V}_{r}}cos\theta \hat{j}\]
$\overrightarrow{{{V}_{Q}}}-\overrightarrow{{{V}_{R}}}=-{{V}_{r}}\sin \theta \overset{\scriptscriptstyle\frown}{i}+{{V}_{r}}\cos \theta \hat{j}$
$\overrightarrow{{{V}_{Q}}}=({{V}_{R}}-{{V}_{r}}\sin \theta )\overset{\scriptscriptstyle\frown}{i}+{{V}_{r}}\cos \theta \hat{j}$
Since Q moves vertically, its horizontal component is zero
That is,
$
{{V}_{R}}-{{V}_{r}}\sin \theta =0 \\
\Rightarrow {{V}_{R}}={{V}_{r}}\sin \theta \\
\therefore \sin \theta =\dfrac{{{V}_{R}}}{{{V}_{r}}}=\dfrac{1}{1.2} \\
$
If the time taken for Q to travel a distance d in forward motion is ${{T}_{Q}}$
Then total time,
${{T}_{Q}}=\dfrac{2d}{1.2{{V}_{R}}\cos \theta }$ (Same for backward motion as well)
Forward motion of P:
Velocity of P with respect to river
\[\overrightarrow{{{V}_{PR}}}={{V}_{r}}\hat{i}\] since the direction of velocity of both the river and the boat is same.
\[
\overrightarrow{{{V}_{P}}}-\overrightarrow{{{V}_{R}}}={{V}_{r}}\hat{i} \\
\Rightarrow \overrightarrow{{{V}_{P}}}=\overrightarrow{{{V}_{R}}}+{{V}_{r}}\hat{i} \\
\Rightarrow \overrightarrow{{{V}_{P}}} =({{V}_{R}}+{{V}_{r}})\hat{i} \\
\Rightarrow \overrightarrow{{{V}_{P}}} ={{V}_{R}}(1+1.2)\hat{i}=2.2{{V}_{R}}\hat{i} \\
\]
Time taken to complete forward motion by P:
${{T}^{'}}=\dfrac{d}{2.2{{V}_{R}}}$
Backward motion of P:
\[\overrightarrow{{{V}_{AR}}}=-{{V}_{r}}\hat{i}\]
\[
\overrightarrow{{{V}_{P}}}-\overrightarrow{{{V}_{R}}}=-{{V}_{r}}\hat{i} \\
\Rightarrow \overrightarrow{{{V}_{P}}}=\overrightarrow{{{V}_{R}}}-{{V}_{r}}\hat{i} \\
=({{V}_{R}}-{{V}_{r}})\hat{i} \\
={{V}_{R}}(1-1.2)\hat{i}=-0.2{{V}_{R}}\hat{i} \\
\]
Time taken: ${{T}^{“}}=\dfrac{d}{0.2{{V}_{R}}}$
Therefore total time taken by P
$
{{T}_{P}}=\dfrac{d}{2.2{{V}_{R}}}+\dfrac{d}{0.2{{V}_{R}}} \\
{{T}_{P}} =\dfrac{d}{{{V}_{R}}}(\dfrac{1}{2.2}+\dfrac{1}{0.2})=\dfrac{5.45d}{{{V}_{R}}} \\
$
Hence, $\dfrac{{{T}_{P}}}{{{T}_{Q}}}=\dfrac{\dfrac{5.45d}{{{V}_{R}}}}{\dfrac{2d}{1.2{{V}_{R}}\cos \theta }}=\dfrac{5.45\times 1.2\cos \theta }{2}$
Since,
$
\sin \theta =\dfrac{1}{1.2} \\
\cos \theta =\dfrac{\sqrt{{{1.2}^{2}}-1}}{1.2}=0.36 \\
$
Hence,
$\dfrac{{{T}_{P}}}{{{T}_{Q}}}=\dfrac{5.45\times 1.2\times 0.36}{2}\approx 1.8$
Hence, the required ratio has been obtained.
Note: If the ratio between the relative velocity and the stream velocity is given and if it is supposedly $\eta $ then we can find the ratios of time of objects in perpendicular motion using the formula
\[\dfrac{{{T}_{1}}}{{{T}_{2}}}=\dfrac{\eta }{\sqrt{{{\eta }^{2}}-1}}\]
Complete step by step solution:
We’re given that both the boats travel equal distances in perpendicular directions. Let the distance be d.
Consider the stream velocity be ${{V}_{R}}$
Relative velocity of Q with respect to river is the same as that of P’s relative velocity with respect to river. Let it be ${{V}_{r}}$
We’re also given that $\dfrac{{{V}_{r}}}{{{V}_{R}}}=1.2$
Forward motion of Q:
\[{{\overrightarrow{V}}_{Q/R}}={{\overrightarrow{V}}_{r}}=-{{V}_{r}}\sin \theta \hat{i}+{{V}_{r}}cos\theta \hat{j}\]
$\overrightarrow{{{V}_{Q}}}-\overrightarrow{{{V}_{R}}}=-{{V}_{r}}\sin \theta \overset{\scriptscriptstyle\frown}{i}+{{V}_{r}}\cos \theta \hat{j}$
$\overrightarrow{{{V}_{Q}}}=({{V}_{R}}-{{V}_{r}}\sin \theta )\overset{\scriptscriptstyle\frown}{i}+{{V}_{r}}\cos \theta \hat{j}$
Since Q moves vertically, its horizontal component is zero
That is,
$
{{V}_{R}}-{{V}_{r}}\sin \theta =0 \\
\Rightarrow {{V}_{R}}={{V}_{r}}\sin \theta \\
\therefore \sin \theta =\dfrac{{{V}_{R}}}{{{V}_{r}}}=\dfrac{1}{1.2} \\
$
If the time taken for Q to travel a distance d in forward motion is ${{T}_{Q}}$
Then total time,
${{T}_{Q}}=\dfrac{2d}{1.2{{V}_{R}}\cos \theta }$ (Same for backward motion as well)
Forward motion of P:
Velocity of P with respect to river
\[\overrightarrow{{{V}_{PR}}}={{V}_{r}}\hat{i}\] since the direction of velocity of both the river and the boat is same.
\[
\overrightarrow{{{V}_{P}}}-\overrightarrow{{{V}_{R}}}={{V}_{r}}\hat{i} \\
\Rightarrow \overrightarrow{{{V}_{P}}}=\overrightarrow{{{V}_{R}}}+{{V}_{r}}\hat{i} \\
\Rightarrow \overrightarrow{{{V}_{P}}} =({{V}_{R}}+{{V}_{r}})\hat{i} \\
\Rightarrow \overrightarrow{{{V}_{P}}} ={{V}_{R}}(1+1.2)\hat{i}=2.2{{V}_{R}}\hat{i} \\
\]
Time taken to complete forward motion by P:
${{T}^{'}}=\dfrac{d}{2.2{{V}_{R}}}$
Backward motion of P:
\[\overrightarrow{{{V}_{AR}}}=-{{V}_{r}}\hat{i}\]
\[
\overrightarrow{{{V}_{P}}}-\overrightarrow{{{V}_{R}}}=-{{V}_{r}}\hat{i} \\
\Rightarrow \overrightarrow{{{V}_{P}}}=\overrightarrow{{{V}_{R}}}-{{V}_{r}}\hat{i} \\
=({{V}_{R}}-{{V}_{r}})\hat{i} \\
={{V}_{R}}(1-1.2)\hat{i}=-0.2{{V}_{R}}\hat{i} \\
\]
Time taken: ${{T}^{“}}=\dfrac{d}{0.2{{V}_{R}}}$
Therefore total time taken by P
$
{{T}_{P}}=\dfrac{d}{2.2{{V}_{R}}}+\dfrac{d}{0.2{{V}_{R}}} \\
{{T}_{P}} =\dfrac{d}{{{V}_{R}}}(\dfrac{1}{2.2}+\dfrac{1}{0.2})=\dfrac{5.45d}{{{V}_{R}}} \\
$
Hence, $\dfrac{{{T}_{P}}}{{{T}_{Q}}}=\dfrac{\dfrac{5.45d}{{{V}_{R}}}}{\dfrac{2d}{1.2{{V}_{R}}\cos \theta }}=\dfrac{5.45\times 1.2\cos \theta }{2}$
Since,
$
\sin \theta =\dfrac{1}{1.2} \\
\cos \theta =\dfrac{\sqrt{{{1.2}^{2}}-1}}{1.2}=0.36 \\
$
Hence,
$\dfrac{{{T}_{P}}}{{{T}_{Q}}}=\dfrac{5.45\times 1.2\times 0.36}{2}\approx 1.8$
Hence, the required ratio has been obtained.
Note: If the ratio between the relative velocity and the stream velocity is given and if it is supposedly $\eta $ then we can find the ratios of time of objects in perpendicular motion using the formula
\[\dfrac{{{T}_{1}}}{{{T}_{2}}}=\dfrac{\eta }{\sqrt{{{\eta }^{2}}-1}}\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

