Answer
Verified
494.1k+ views
Hint: In the question, it is given that on the first day Ajay puts 1 rupee and for the next coming days he doubles the amount of money everyday. So, start with 1 rupee and then double the amount of money everyday that he puts into the envelope and then add them all for eight days to get money collected on the 8th day.
Complete step-by-step answer:
In the question, it is given that:
Amount of money that Ajay put on first day = Re.1
And it is given in the question that everyday he doubles the money that he puts in the envelope. So, to calculate the amount of money that he puts on the next day we just multiply the previous day amount by 2.
So, the amount of money that he puts each of days is given as follow:
Amount of money that he puts on the first day $ = {\text{Re}}{\text{.1}}$.
$
{\text{Amount of money that he puts on second day = 2}} \times {\text{amount of money that he puts on first day}} \\
{\text{ = 2}} \times 1{\text{Rupee = Rs}}{\text{.2}} \\
{\text{Amount of money that he puts on third day = 2}} \times {\text{amount of money that he puts on second day}} \\
{\text{ = 2}} \times {\text{Rs}}{\text{.2 = Rs}}{\text{.4}} \\
{\text{Amount of money that he puts on fourth day = 2}} \times {\text{amount of money that he puts on third day}} \\
{\text{ = 2}} \times {\text{Rs}}{\text{.4 = Rs}}{\text{.8}} \\
{\text{Amount of money that he puts on fifth day = 2}} \times {\text{amount of money that he puts on fourth day}} \\
{\text{ = 2}} \times {\text{Rs}}{\text{.8 = Rs}}{\text{.16}} \\
{\text{Amount of money that he puts on sixth day = 2}} \times {\text{amount of money that he puts on fifth day}} \\
{\text{ = 2}} \times {\text{Rs16 = Rs}}{\text{.32}} \\
{\text{Amount of money that he puts on seventh day = 2}} \times {\text{amount of money that he puts on sixth day}} \\
{\text{ = 2}} \times {\text{Rs}}{\text{.32 = Rs}}{\text{.64}} \\
{\text{Amount of money that he puts on eighth day = 2}} \times {\text{amount of money that he puts on seventh day}} \\
{\text{ = 2}} \times {\text{Rs64 = Rs}}{\text{.128}} \\
$
So, total money that he collected till 8th day = sum of money collected on each day
= Re.1+Rs.2+Rs.4+Rs.8+Rs.16+Rs.32+Rs.64+Rs.128
= Rs.255.
Note:
In this type of question, the usual method is to calculate the amount for each day by doubling the amount of previous day and then add the amount of each day to get the final answer. But we can also ask this type of question using geometric progression. In this question, it is given that money doubles everyday. So, the common ratio(r)=2 and first term is given 1 and number of terms(n)=8. So, the money collected after 8th day is given by:
${\text{Sum of money = }}\dfrac{{a({r^n} - 1)}}{{r - 1}} = \dfrac{{1({2^8} - 1)}}{{2 - 1}} = {\text{Rs}}.255$
Complete step-by-step answer:
In the question, it is given that:
Amount of money that Ajay put on first day = Re.1
And it is given in the question that everyday he doubles the money that he puts in the envelope. So, to calculate the amount of money that he puts on the next day we just multiply the previous day amount by 2.
So, the amount of money that he puts each of days is given as follow:
Amount of money that he puts on the first day $ = {\text{Re}}{\text{.1}}$.
$
{\text{Amount of money that he puts on second day = 2}} \times {\text{amount of money that he puts on first day}} \\
{\text{ = 2}} \times 1{\text{Rupee = Rs}}{\text{.2}} \\
{\text{Amount of money that he puts on third day = 2}} \times {\text{amount of money that he puts on second day}} \\
{\text{ = 2}} \times {\text{Rs}}{\text{.2 = Rs}}{\text{.4}} \\
{\text{Amount of money that he puts on fourth day = 2}} \times {\text{amount of money that he puts on third day}} \\
{\text{ = 2}} \times {\text{Rs}}{\text{.4 = Rs}}{\text{.8}} \\
{\text{Amount of money that he puts on fifth day = 2}} \times {\text{amount of money that he puts on fourth day}} \\
{\text{ = 2}} \times {\text{Rs}}{\text{.8 = Rs}}{\text{.16}} \\
{\text{Amount of money that he puts on sixth day = 2}} \times {\text{amount of money that he puts on fifth day}} \\
{\text{ = 2}} \times {\text{Rs16 = Rs}}{\text{.32}} \\
{\text{Amount of money that he puts on seventh day = 2}} \times {\text{amount of money that he puts on sixth day}} \\
{\text{ = 2}} \times {\text{Rs}}{\text{.32 = Rs}}{\text{.64}} \\
{\text{Amount of money that he puts on eighth day = 2}} \times {\text{amount of money that he puts on seventh day}} \\
{\text{ = 2}} \times {\text{Rs64 = Rs}}{\text{.128}} \\
$
So, total money that he collected till 8th day = sum of money collected on each day
= Re.1+Rs.2+Rs.4+Rs.8+Rs.16+Rs.32+Rs.64+Rs.128
= Rs.255.
Note:
In this type of question, the usual method is to calculate the amount for each day by doubling the amount of previous day and then add the amount of each day to get the final answer. But we can also ask this type of question using geometric progression. In this question, it is given that money doubles everyday. So, the common ratio(r)=2 and first term is given 1 and number of terms(n)=8. So, the money collected after 8th day is given by:
${\text{Sum of money = }}\dfrac{{a({r^n} - 1)}}{{r - 1}} = \dfrac{{1({2^8} - 1)}}{{2 - 1}} = {\text{Rs}}.255$
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it