
To remove the second term of the equation ${x^4} - 10{x^3} + 35{x^2} - 50x + 24 = 0$, diminish the roots by
A) $\dfrac{2}{5}$
B) $ - \dfrac{2}{5}$
C) \[\dfrac{5}{2}\]
D) $ - \dfrac{5}{2}$
Answer
581.4k+ views
Hint:
Firstly, put \[x = y + h\], in the given equation.
Then, expand each term and get an equation in the form of $a{y^4} + b{y^3} + c{y^2} + dy + e = 0$.
Now, to remove the second term, the coefficient of second term, i.e. \[b = 0\].
Thus, get the required answer.
Complete step by step solution:
The equation given here is ${x^4} - 10{x^3} + 35{x^2} - 50x + 24 = 0$ .
Now, replacing $x = y + h$ , we get
${\left( {y + h} \right)^4} - 10{\left( {y + h} \right)^3} + 35{\left( {y + h} \right)^2} - 50\left( {y + h} \right) + 24 = 0$
Now, solving the above equation as follows
${\left( {{y^2} + {h^2} + 2yh} \right)^2} - 10\left( {{y^3} + {h^3} + 3y{h^2} + 3{y^2}h} \right) + 35\left( {{y^2} + {h^2} + 2yh} \right) - 50y - 50h + 24 = 0$
$
\therefore {\left( {{y^2}} \right)^2} + {\left( {{h^2}} \right)^2} + {\left( {2yh} \right)^2} + 2\left( {{y^2}} \right)\left( {{h^2}} \right) + 2\left( {{h^2}} \right)\left( {2yh} \right) + 2\left( {2yh} \right)\left( {{y^2}} \right) - 10{y^3} - 10{h^3} - 30y{h^2} - \\
30{y^2}h + 35{y^2} + 35{h^2} + 70yh - 50y - 50h + 24 = 0 \\
$
$
\therefore {y^4} + {h^4} + 4{y^2}{h^2} + 2{y^2}{h^2} + 4y{h^3} + 4{y^3}h - 10{y^3} - 10{h^3} - 30y{h^2} - 30{y^2}h + 35{y^2} + 35{h^2} + \\
70yh - 50y - 50h + 24 = 0 \\
$
Now, writing the terms in the form of $a{y^4} + b{y^3} + c{y^2} + dy + e = 0$
\[\therefore {y^4} + {y^3}\left( {4h - 10} \right) + {y^2}\left( {4{h^2} + 2{h^2} - 30h + 35} \right) + y\left( {4{h^3} - 30{h^2} + 70h - 50} \right) + \left( {{h^4} - 10{h^3} + 35{h^2} - 50h + 24} \right) = 0\] As it is said that, the second term of the equation, must be removed.
So, to remove the second term of the equation, the coefficient of the second term must be 0.
$
\therefore 4h - 10 = 0 \\
\therefore 4h = 10 \\
\therefore h = \dfrac{{10}}{4} \\
\therefore h = \dfrac{5}{2} \\
$
Thus, we get the value of h as $h = \dfrac{5}{2}$ .
Now, the reduced equation can be written as
\[
\therefore {y^4} + {y^3}\left( {4\left( {\dfrac{5}{2}} \right) - 10} \right) + {y^2}\left( {4{{\left( {\dfrac{5}{2}} \right)}^2} + 2{{\left( {\dfrac{5}{2}} \right)}^2} - 30\left( {\dfrac{5}{2}} \right) + 35} \right) + y\left( {4{{\left( {\dfrac{5}{2}} \right)}^3} - 30{{\left( {\dfrac{5}{2}} \right)}^2} + 70\left( {\dfrac{5}{2}} \right) - 50} \right) + \\
\left( {{{\left( {\dfrac{5}{2}} \right)}^4} - 10{{\left( {\dfrac{5}{2}} \right)}^3} + 35{{\left( {\dfrac{5}{2}} \right)}^2} - 50\left( {\dfrac{5}{2}} \right) + 24} \right) = 0 \\
\]
Thus, the reduced equation is ${y^4} - \dfrac{5}{2}{y^2} - 211 = 0$.
We can also write the above equation as ${x^4} - \dfrac{5}{2}{x^2} - 211 = 0$
Thus, to remove the second term, we have to diminish the roots by $\dfrac{5}{2}$ .
So, option (C) is correct.
Note:
Here, the expansion of the terms must be calculated carefully using appropriate formulae.
The formulae used in the expansion in the question are:
$
{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab \\
{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3a{b^2} + 3{a^2}b \\
{\left( {a + b} \right)^4} = {\left[ {{{\left( {a + b} \right)}^2}} \right]^2} = {\left( {{a^2} + {b^2} + 2ab} \right)^2} \\
$
Firstly, put \[x = y + h\], in the given equation.
Then, expand each term and get an equation in the form of $a{y^4} + b{y^3} + c{y^2} + dy + e = 0$.
Now, to remove the second term, the coefficient of second term, i.e. \[b = 0\].
Thus, get the required answer.
Complete step by step solution:
The equation given here is ${x^4} - 10{x^3} + 35{x^2} - 50x + 24 = 0$ .
Now, replacing $x = y + h$ , we get
${\left( {y + h} \right)^4} - 10{\left( {y + h} \right)^3} + 35{\left( {y + h} \right)^2} - 50\left( {y + h} \right) + 24 = 0$
Now, solving the above equation as follows
${\left( {{y^2} + {h^2} + 2yh} \right)^2} - 10\left( {{y^3} + {h^3} + 3y{h^2} + 3{y^2}h} \right) + 35\left( {{y^2} + {h^2} + 2yh} \right) - 50y - 50h + 24 = 0$
$
\therefore {\left( {{y^2}} \right)^2} + {\left( {{h^2}} \right)^2} + {\left( {2yh} \right)^2} + 2\left( {{y^2}} \right)\left( {{h^2}} \right) + 2\left( {{h^2}} \right)\left( {2yh} \right) + 2\left( {2yh} \right)\left( {{y^2}} \right) - 10{y^3} - 10{h^3} - 30y{h^2} - \\
30{y^2}h + 35{y^2} + 35{h^2} + 70yh - 50y - 50h + 24 = 0 \\
$
$
\therefore {y^4} + {h^4} + 4{y^2}{h^2} + 2{y^2}{h^2} + 4y{h^3} + 4{y^3}h - 10{y^3} - 10{h^3} - 30y{h^2} - 30{y^2}h + 35{y^2} + 35{h^2} + \\
70yh - 50y - 50h + 24 = 0 \\
$
Now, writing the terms in the form of $a{y^4} + b{y^3} + c{y^2} + dy + e = 0$
\[\therefore {y^4} + {y^3}\left( {4h - 10} \right) + {y^2}\left( {4{h^2} + 2{h^2} - 30h + 35} \right) + y\left( {4{h^3} - 30{h^2} + 70h - 50} \right) + \left( {{h^4} - 10{h^3} + 35{h^2} - 50h + 24} \right) = 0\] As it is said that, the second term of the equation, must be removed.
So, to remove the second term of the equation, the coefficient of the second term must be 0.
$
\therefore 4h - 10 = 0 \\
\therefore 4h = 10 \\
\therefore h = \dfrac{{10}}{4} \\
\therefore h = \dfrac{5}{2} \\
$
Thus, we get the value of h as $h = \dfrac{5}{2}$ .
Now, the reduced equation can be written as
\[
\therefore {y^4} + {y^3}\left( {4\left( {\dfrac{5}{2}} \right) - 10} \right) + {y^2}\left( {4{{\left( {\dfrac{5}{2}} \right)}^2} + 2{{\left( {\dfrac{5}{2}} \right)}^2} - 30\left( {\dfrac{5}{2}} \right) + 35} \right) + y\left( {4{{\left( {\dfrac{5}{2}} \right)}^3} - 30{{\left( {\dfrac{5}{2}} \right)}^2} + 70\left( {\dfrac{5}{2}} \right) - 50} \right) + \\
\left( {{{\left( {\dfrac{5}{2}} \right)}^4} - 10{{\left( {\dfrac{5}{2}} \right)}^3} + 35{{\left( {\dfrac{5}{2}} \right)}^2} - 50\left( {\dfrac{5}{2}} \right) + 24} \right) = 0 \\
\]
Thus, the reduced equation is ${y^4} - \dfrac{5}{2}{y^2} - 211 = 0$.
We can also write the above equation as ${x^4} - \dfrac{5}{2}{x^2} - 211 = 0$
Thus, to remove the second term, we have to diminish the roots by $\dfrac{5}{2}$ .
So, option (C) is correct.
Note:
Here, the expansion of the terms must be calculated carefully using appropriate formulae.
The formulae used in the expansion in the question are:
$
{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab \\
{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3a{b^2} + 3{a^2}b \\
{\left( {a + b} \right)^4} = {\left[ {{{\left( {a + b} \right)}^2}} \right]^2} = {\left( {{a^2} + {b^2} + 2ab} \right)^2} \\
$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

