Answer
Verified
446.1k+ views
Hint: For an infinitely charged plane sheet, electric field is given by $E = \dfrac{\sigma }{{2{\varepsilon _0}}}$ .
The total electric field at point ‘$P$’ will be the vector sum of the electric field due to all the three infinitely charged sheets.
Complete answer:
As given in the question, three infinitely charged sheets are kept parallel to x-plane or are kept at $z=0, z=2a$, and $z=3a.$
For an infinite sheet of charge, the electric field will be perpendicular to the surface and given by $E = \dfrac{\sigma }{{2{\varepsilon _0}}}$. This formula is derived by the Gauss Law which states that the total electric flux out of a closed surface is equal to the charge enclosed divided by the permittivity. The electric flux in an area is defined as the electric field multiplied by the area of the surface projected in a plane and perpendicular to the field.
Now, the direction of the electric field depends on the sign of surface charged density $\sigma $ and the location of the point $P$. If $\sigma $ is positive then the direction will be towards point $P$.
Let us suppose an upward direction to be positive.
So, the electric field due to the sheet at $z=0$, ${E_{ - \sigma }} = - \dfrac{\sigma }{{2{\varepsilon _0}}}$
Similarly, the electric field due to the sheet at $z=2a$, ${E_{ - 2\sigma }} = - \dfrac{{2\sigma }}{{2{\varepsilon _0}}}$.
And, the electric field due to the sheet at $z=3a$, ${E_\sigma } = - \dfrac{\sigma }{{2{\varepsilon _0}}}$
Now, the total electric field due to the sheets at point P is given by, ${E_P} = {E_{ - \sigma }} + {E_{ - 2\sigma }} + {E_\sigma }$ as a vector sum.
So, ${E_P} = - \dfrac{\sigma }{{2{\varepsilon _0}}} - \dfrac{{2\sigma }}{{2{\varepsilon _0}}} - \dfrac{\sigma }{{2{\varepsilon _0}}}$
On simplification we have, ${E_P} = - \dfrac{{2\sigma }}{{{\varepsilon _0}}}$
Here (–) sign represents the downward or opposite of $\hat k$.
$\therefore$ The the value of electric field at 'P' is ${E_P} = - \dfrac{{2\sigma }}{{{\varepsilon _0}}}$. Hence, the correct option is (C).
Note:
The electric field is a vector quantity. So, carefully determine the direction of the field. Remember that the direction of the electric field depends on the sign of surface charge density $\sigma $ and the location of the point P. If $\sigma $ is positive then the direction will be towards point $P$ and if it is negative then the direction will be away from point $P$.
The total electric field at point ‘$P$’ will be the vector sum of the electric field due to all the three infinitely charged sheets.
Complete answer:
As given in the question, three infinitely charged sheets are kept parallel to x-plane or are kept at $z=0, z=2a$, and $z=3a.$
For an infinite sheet of charge, the electric field will be perpendicular to the surface and given by $E = \dfrac{\sigma }{{2{\varepsilon _0}}}$. This formula is derived by the Gauss Law which states that the total electric flux out of a closed surface is equal to the charge enclosed divided by the permittivity. The electric flux in an area is defined as the electric field multiplied by the area of the surface projected in a plane and perpendicular to the field.
Now, the direction of the electric field depends on the sign of surface charged density $\sigma $ and the location of the point $P$. If $\sigma $ is positive then the direction will be towards point $P$.
Let us suppose an upward direction to be positive.
So, the electric field due to the sheet at $z=0$, ${E_{ - \sigma }} = - \dfrac{\sigma }{{2{\varepsilon _0}}}$
Similarly, the electric field due to the sheet at $z=2a$, ${E_{ - 2\sigma }} = - \dfrac{{2\sigma }}{{2{\varepsilon _0}}}$.
And, the electric field due to the sheet at $z=3a$, ${E_\sigma } = - \dfrac{\sigma }{{2{\varepsilon _0}}}$
Now, the total electric field due to the sheets at point P is given by, ${E_P} = {E_{ - \sigma }} + {E_{ - 2\sigma }} + {E_\sigma }$ as a vector sum.
So, ${E_P} = - \dfrac{\sigma }{{2{\varepsilon _0}}} - \dfrac{{2\sigma }}{{2{\varepsilon _0}}} - \dfrac{\sigma }{{2{\varepsilon _0}}}$
On simplification we have, ${E_P} = - \dfrac{{2\sigma }}{{{\varepsilon _0}}}$
Here (–) sign represents the downward or opposite of $\hat k$.
$\therefore$ The the value of electric field at 'P' is ${E_P} = - \dfrac{{2\sigma }}{{{\varepsilon _0}}}$. Hence, the correct option is (C).
Note:
The electric field is a vector quantity. So, carefully determine the direction of the field. Remember that the direction of the electric field depends on the sign of surface charge density $\sigma $ and the location of the point P. If $\sigma $ is positive then the direction will be towards point $P$ and if it is negative then the direction will be away from point $P$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths