
Three concentric spherical shells have radii a, b and c $\left( a\langle b\langle c \right)$ and have surface charge densities as $+\sigma ,-\sigma ,+\sigma $ respectively. If ${{V}_{A}},{{V}_{B}}\text{ and }{{V}_{C}}$ denote the potentials of three shells, then for $c=a+b$, we have:
$\begin{align}
& \left( A \right){{V}_{C}}={{V}_{B}}={{V}_{A}} \\
& \left( B \right){{V}_{C}}={{V}_{B}}\ne {{V}_{A}} \\
& \left( C \right){{V}_{C}}\ne {{V}_{B}}={{V}_{A}} \\
& \left( D \right){{V}_{C}}\ne {{V}_{B}}\ne {{V}_{A}} \\
\end{align}$
Answer
510k+ views
Hint: We will first of all draw a proper diagram to get a better understanding of our problem. The second step will be to write the surface charge of each shell using their radii and surface charge densities. Now, we will use the formula for potential of an electrically charged shell at its surface which is given by: $V=\dfrac{1}{4\pi \varepsilon }\dfrac{Q}{r}$ . ‘r’ being the radius of shell and ‘Q’ its surface charge. We shall proceed in this manner to get our solution.
Complete step by step solution: Let us first of all draw a proper diagram to understand our problem. This is done as follows:
Now the situation is pretty clear to us and thus we can move on to our next step, that is, writing the charges on each sphere. This can be done as follows:
$\begin{align}
& \Rightarrow {{Q}_{A}}=+\sigma \left( 4\pi {{a}^{2}} \right) \\
& \Rightarrow {{Q}_{B}}=-\sigma \left( 4\pi {{b}^{2}} \right) \\
& \Rightarrow {{Q}_{C}}=+\sigma \left( 4\pi {{c}^{2}} \right) \\
\end{align}$
Now that we have the value of charges on all the concentric shells, we can easily calculate the potential of each sphere. This is done as follows:
The potential of shell ‘C’ is due to all the charges present inside. This is equal to:
$\begin{align}
& \Rightarrow {{V}_{C}}=\dfrac{1}{4\pi \varepsilon }\left( \dfrac{{{Q}_{A}}}{c}+\dfrac{{{Q}_{B}}}{c}+\dfrac{{{Q}_{C}}}{c} \right) \\
& \Rightarrow {{V}_{C}}=\dfrac{1}{4\pi \varepsilon c}\left( {{Q}_{A}}+{{Q}_{B}}+{{Q}_{C}} \right) \\
& \Rightarrow {{V}_{C}}=\dfrac{1}{4\pi \varepsilon c}\left[ +\sigma \left( 4\pi {{a}^{2}} \right)-\sigma \left( 4\pi {{b}^{2}} \right)+\sigma \left( 4\pi {{c}^{2}} \right) \right] \\
& \Rightarrow {{V}_{C}}=\dfrac{\sigma }{4\pi \varepsilon c}\left[ 4\pi \left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right) \right] \\
& \Rightarrow {{V}_{C}}=\dfrac{\sigma }{\varepsilon }\left( \dfrac{{{a}^{2}}}{c}-\dfrac{{{b}^{2}}}{c}+c \right) \\
\end{align}$
Now, the potential al the surface of shell ‘B’ will be equal to:
$\begin{align}
& \Rightarrow {{V}_{B}}=\dfrac{1}{4\pi \varepsilon }\left( \dfrac{{{Q}_{A}}}{b}+\dfrac{{{Q}_{B}}}{b}+\dfrac{{{Q}_{C}}}{c} \right) \\
& \Rightarrow {{V}_{B}}=\dfrac{1}{4\pi \varepsilon }\left( \dfrac{\sigma \left( 4\pi {{a}^{2}} \right)}{b}-\dfrac{\sigma \left( 4\pi {{b}^{2}} \right)}{b}+\dfrac{\sigma \left( 4\pi {{c}^{2}} \right)}{c} \right) \\
& \Rightarrow {{V}_{B}}=\dfrac{\sigma }{\varepsilon }\left( \dfrac{{{a}^{2}}}{b}-b+c \right) \\
\end{align}$
And, the potential at the surface of shell ‘A’ will be equal to:
$\begin{align}
& \Rightarrow {{V}_{A}}=\dfrac{1}{4\pi \varepsilon }\left( \dfrac{{{Q}_{A}}}{a}+\dfrac{{{Q}_{B}}}{b}+\dfrac{{{Q}_{C}}}{c} \right) \\
& \Rightarrow {{V}_{A}}=\dfrac{1}{4\pi \varepsilon }\left( \dfrac{\sigma \left( 4\pi {{a}^{2}} \right)}{a}-\dfrac{\sigma \left( 4\pi {{b}^{2}} \right)}{b}+\dfrac{\sigma \left( 4\pi {{c}^{2}} \right)}{c} \right) \\
& \Rightarrow {{V}_{A}}=\dfrac{\sigma }{\varepsilon }\left( a-b+c \right) \\
\end{align}$
Putting, $c=a+b$, in the potential expression of all the three shells and simplifying, we get:
$\begin{align}
& \Rightarrow {{V}_{C}}=\dfrac{2\sigma }{\varepsilon }\left( a \right) \\
& \Rightarrow {{V}_{B}}=\dfrac{a\sigma }{\varepsilon }\left( \dfrac{2a+b}{a+b} \right) \\
& \Rightarrow {{V}_{A}}=\dfrac{2\sigma }{\varepsilon }\left( a \right) \\
\end{align}$
From these results we can clearly see that:
$\Rightarrow {{V}_{C}}\ne {{V}_{B}}={{V}_{A}}$
Hence, option (C) is the correct option.
Note:
In problems like these, we should be careful in writing the potential of inner shells as they are comparatively harder. Also, in lengthy calculations like these, be sure to check and verify your calculation at each step of the process as reviewing the solution at each step is better than reviewing the solution at the end.
Complete step by step solution: Let us first of all draw a proper diagram to understand our problem. This is done as follows:
Now the situation is pretty clear to us and thus we can move on to our next step, that is, writing the charges on each sphere. This can be done as follows:
$\begin{align}
& \Rightarrow {{Q}_{A}}=+\sigma \left( 4\pi {{a}^{2}} \right) \\
& \Rightarrow {{Q}_{B}}=-\sigma \left( 4\pi {{b}^{2}} \right) \\
& \Rightarrow {{Q}_{C}}=+\sigma \left( 4\pi {{c}^{2}} \right) \\
\end{align}$
Now that we have the value of charges on all the concentric shells, we can easily calculate the potential of each sphere. This is done as follows:
The potential of shell ‘C’ is due to all the charges present inside. This is equal to:
$\begin{align}
& \Rightarrow {{V}_{C}}=\dfrac{1}{4\pi \varepsilon }\left( \dfrac{{{Q}_{A}}}{c}+\dfrac{{{Q}_{B}}}{c}+\dfrac{{{Q}_{C}}}{c} \right) \\
& \Rightarrow {{V}_{C}}=\dfrac{1}{4\pi \varepsilon c}\left( {{Q}_{A}}+{{Q}_{B}}+{{Q}_{C}} \right) \\
& \Rightarrow {{V}_{C}}=\dfrac{1}{4\pi \varepsilon c}\left[ +\sigma \left( 4\pi {{a}^{2}} \right)-\sigma \left( 4\pi {{b}^{2}} \right)+\sigma \left( 4\pi {{c}^{2}} \right) \right] \\
& \Rightarrow {{V}_{C}}=\dfrac{\sigma }{4\pi \varepsilon c}\left[ 4\pi \left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right) \right] \\
& \Rightarrow {{V}_{C}}=\dfrac{\sigma }{\varepsilon }\left( \dfrac{{{a}^{2}}}{c}-\dfrac{{{b}^{2}}}{c}+c \right) \\
\end{align}$
Now, the potential al the surface of shell ‘B’ will be equal to:
$\begin{align}
& \Rightarrow {{V}_{B}}=\dfrac{1}{4\pi \varepsilon }\left( \dfrac{{{Q}_{A}}}{b}+\dfrac{{{Q}_{B}}}{b}+\dfrac{{{Q}_{C}}}{c} \right) \\
& \Rightarrow {{V}_{B}}=\dfrac{1}{4\pi \varepsilon }\left( \dfrac{\sigma \left( 4\pi {{a}^{2}} \right)}{b}-\dfrac{\sigma \left( 4\pi {{b}^{2}} \right)}{b}+\dfrac{\sigma \left( 4\pi {{c}^{2}} \right)}{c} \right) \\
& \Rightarrow {{V}_{B}}=\dfrac{\sigma }{\varepsilon }\left( \dfrac{{{a}^{2}}}{b}-b+c \right) \\
\end{align}$
And, the potential at the surface of shell ‘A’ will be equal to:
$\begin{align}
& \Rightarrow {{V}_{A}}=\dfrac{1}{4\pi \varepsilon }\left( \dfrac{{{Q}_{A}}}{a}+\dfrac{{{Q}_{B}}}{b}+\dfrac{{{Q}_{C}}}{c} \right) \\
& \Rightarrow {{V}_{A}}=\dfrac{1}{4\pi \varepsilon }\left( \dfrac{\sigma \left( 4\pi {{a}^{2}} \right)}{a}-\dfrac{\sigma \left( 4\pi {{b}^{2}} \right)}{b}+\dfrac{\sigma \left( 4\pi {{c}^{2}} \right)}{c} \right) \\
& \Rightarrow {{V}_{A}}=\dfrac{\sigma }{\varepsilon }\left( a-b+c \right) \\
\end{align}$
Putting, $c=a+b$, in the potential expression of all the three shells and simplifying, we get:
$\begin{align}
& \Rightarrow {{V}_{C}}=\dfrac{2\sigma }{\varepsilon }\left( a \right) \\
& \Rightarrow {{V}_{B}}=\dfrac{a\sigma }{\varepsilon }\left( \dfrac{2a+b}{a+b} \right) \\
& \Rightarrow {{V}_{A}}=\dfrac{2\sigma }{\varepsilon }\left( a \right) \\
\end{align}$
From these results we can clearly see that:
$\Rightarrow {{V}_{C}}\ne {{V}_{B}}={{V}_{A}}$
Hence, option (C) is the correct option.
Note:
In problems like these, we should be careful in writing the potential of inner shells as they are comparatively harder. Also, in lengthy calculations like these, be sure to check and verify your calculation at each step of the process as reviewing the solution at each step is better than reviewing the solution at the end.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

