
There are two examination rooms A and B. If 10 candidates are sent from A to B, the number of students in each room is the same. If 20 candidates are sent from B to A, the number of students in A is double the number of students in B. Find the number of students in each room.
Answer
503.8k+ views
Hint- Assume the number of students in respective rooms to be two different variables, and compute them.
Let, the number of students in room A and B are x and y respectively.
Then it is given if 10 candidates are sent from A to B, the number of students in each room is the same.
Thus $x - 10 = y + 10$
$ \Rightarrow x - y = 20$…………………. (1)
Now it is also given that if 20 candidates are sent from B to A, the number of students in A is double the number of students in B
$x + 20 = 2\left( {y - 20} \right)$
$ \Rightarrow x - 2y = - 60$………………………….. (2)
Now let’s solve equation (1) and equation (2)
$ \Rightarrow x - y = 20$……………………… (1)
$ \Rightarrow x - 2y = - 60$…………………. (2)
Now in equation (1) multiply by 2 on both side, we get
$ \Rightarrow 2x - 2y = 40$………………. (3)
Subtract equation (3) and equation (2)
$2x - 2y - x + 2y = 40 + 60$
$ \Rightarrow x = 100$
Now substitute the value of x in equation (1) we get
$
100 - y = 20 \\
\Rightarrow y = 80 \\
$
The number of students in room A is 100 and the number of students in room B is 80.
Note- In such types of questions, just focus on how many numbers (as in this question there are given numbers of students) are shifted where, according to them, make equations and solve them to obtain the variables. This will give the correct answer.
Let, the number of students in room A and B are x and y respectively.
Then it is given if 10 candidates are sent from A to B, the number of students in each room is the same.
Thus $x - 10 = y + 10$
$ \Rightarrow x - y = 20$…………………. (1)
Now it is also given that if 20 candidates are sent from B to A, the number of students in A is double the number of students in B
$x + 20 = 2\left( {y - 20} \right)$
$ \Rightarrow x - 2y = - 60$………………………….. (2)
Now let’s solve equation (1) and equation (2)
$ \Rightarrow x - y = 20$……………………… (1)
$ \Rightarrow x - 2y = - 60$…………………. (2)
Now in equation (1) multiply by 2 on both side, we get
$ \Rightarrow 2x - 2y = 40$………………. (3)
Subtract equation (3) and equation (2)
$2x - 2y - x + 2y = 40 + 60$
$ \Rightarrow x = 100$
Now substitute the value of x in equation (1) we get
$
100 - y = 20 \\
\Rightarrow y = 80 \\
$
The number of students in room A is 100 and the number of students in room B is 80.
Note- In such types of questions, just focus on how many numbers (as in this question there are given numbers of students) are shifted where, according to them, make equations and solve them to obtain the variables. This will give the correct answer.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

The Chinese traveler Hiuen Tsang called the Prince class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

What were the major teachings of Baba Guru Nanak class 7 social science CBSE


