
There are four concentric shells A, B, C and D of radii $a$, $2a$, $3a$ and $4a$ respectively. Shell B and D are given charges $ + q$ and $ - q$ respectively. Shell C is now earthed. The potential difference ${V_A} - {V_C}$ is $k = \dfrac{1}{{4\pi {\varepsilon _o}}}$:
(A) $\dfrac{{kq}}{{2a}}$
(B) $\dfrac{{kq}}{{3a}}$
(C) $\dfrac{{kq}}{{4a}}$
(D) $\dfrac{{kq}}{{6a}}$
Answer
562.8k+ views
Hint
We need to find the potential at shell C and then equate that value to zero. From there we can find the charge induced on C. Therefore, by calculating the value of the potential at the shells A and C and we can find the difference in their potential.
Formula Used: In this solution, we will be using the following formula
$V = \dfrac{{kq}}{d}$
where $V$ is the potential
$k = \dfrac{1}{{4\pi {\varepsilon _o}}}$ where ${\varepsilon _o}$ is the permittivity in free space, $q$ is the charge and $d$ is the distance.
Complete step by step answer
In this case there are 4 concentric shells A, B, C, and D of radius $a$, $2a$, $3a$ and $4a$. A charge $q$ is placed on shell B and $ - q$ is placed on the shell D. So we can draw the figure as,
The electric potential due to a charge can be given by the formula,
$V = \dfrac{{kq}}{d}$
Now the potential on the shell C due to the charges placed on the shells D end B is,
${V_c} = \dfrac{{kq}}{{3a}} + \dfrac{{kq'}}{{3a}} - \dfrac{{kq}}{{4a}}$
where $q'$ is the charge induced on C.
And the potential on the surface of A is,
${V_A} = \dfrac{{kq}}{{2a}} + \dfrac{{kq'}}{{3a}} - \dfrac{{kq}}{{4a}}$
Now the shell C is grounded. So the potential on C will be 0. That is, ${V_c} = 0$.
So equating the equation we get,
$0 = \dfrac{{kq}}{{3a}} + \dfrac{{kq'}}{{3a}} - \dfrac{{kq}}{{4a}}$
We can cancel the $k$ and $a$ from the numerator and denominator of all the terms.
So we get,
$0 = \dfrac{q}{3} + \dfrac{{q'}}{3} - \dfrac{q}{4}$
Therefore taking the term containing $q'$ to one side,
$\dfrac{{q'}}{3} = \dfrac{q}{4} - \dfrac{q}{3}$
On the R.H.S taking LCM, we find $q'$ as,
$q' = \dfrac{{\left( {3 - 4} \right)}}{{12}}3q$
On doing the calculation we get
$ \Rightarrow q' = - \dfrac{q}{4}$
Now putting this value of $q'$ in the equation for ${V_A}$ we get
${V_A} = \dfrac{{kq}}{{2a}} - \dfrac{{k\dfrac{q}{4}}}{{3a}} - \dfrac{{kq}}{{4a}}$
$ \Rightarrow {V_A} = \dfrac{{kq}}{{2a}} - \dfrac{{kq}}{{12a}} - \dfrac{{kq}}{{4a}}$
On doing the LCM and calculating further we get3
${V_A} = \dfrac{{6kq - kq - 3kq}}{{12a}} = \dfrac{{2kq}}{{12a}}$
Hence we get the value of the potential at the surface of A as,
${V_A} = \dfrac{{kq}}{{6a}}$
Since ${V_C} = 0$
Therefore ${V_A} - {V_C} = \dfrac{{kq}}{{6a}}$
This is the difference in potential. So the correct option is D.
Note
The electric potential at a point in an electric field is the amount of work that is done in bringing a unit positive charge from infinity to that point. And when a body is charged it can attract and repulse an oppositely charged body. This shows the ability of a charged body to do work. This ability is called the potential of that body.
We need to find the potential at shell C and then equate that value to zero. From there we can find the charge induced on C. Therefore, by calculating the value of the potential at the shells A and C and we can find the difference in their potential.
Formula Used: In this solution, we will be using the following formula
$V = \dfrac{{kq}}{d}$
where $V$ is the potential
$k = \dfrac{1}{{4\pi {\varepsilon _o}}}$ where ${\varepsilon _o}$ is the permittivity in free space, $q$ is the charge and $d$ is the distance.
Complete step by step answer
In this case there are 4 concentric shells A, B, C, and D of radius $a$, $2a$, $3a$ and $4a$. A charge $q$ is placed on shell B and $ - q$ is placed on the shell D. So we can draw the figure as,
The electric potential due to a charge can be given by the formula,
$V = \dfrac{{kq}}{d}$
Now the potential on the shell C due to the charges placed on the shells D end B is,
${V_c} = \dfrac{{kq}}{{3a}} + \dfrac{{kq'}}{{3a}} - \dfrac{{kq}}{{4a}}$
where $q'$ is the charge induced on C.
And the potential on the surface of A is,
${V_A} = \dfrac{{kq}}{{2a}} + \dfrac{{kq'}}{{3a}} - \dfrac{{kq}}{{4a}}$
Now the shell C is grounded. So the potential on C will be 0. That is, ${V_c} = 0$.
So equating the equation we get,
$0 = \dfrac{{kq}}{{3a}} + \dfrac{{kq'}}{{3a}} - \dfrac{{kq}}{{4a}}$
We can cancel the $k$ and $a$ from the numerator and denominator of all the terms.
So we get,
$0 = \dfrac{q}{3} + \dfrac{{q'}}{3} - \dfrac{q}{4}$
Therefore taking the term containing $q'$ to one side,
$\dfrac{{q'}}{3} = \dfrac{q}{4} - \dfrac{q}{3}$
On the R.H.S taking LCM, we find $q'$ as,
$q' = \dfrac{{\left( {3 - 4} \right)}}{{12}}3q$
On doing the calculation we get
$ \Rightarrow q' = - \dfrac{q}{4}$
Now putting this value of $q'$ in the equation for ${V_A}$ we get
${V_A} = \dfrac{{kq}}{{2a}} - \dfrac{{k\dfrac{q}{4}}}{{3a}} - \dfrac{{kq}}{{4a}}$
$ \Rightarrow {V_A} = \dfrac{{kq}}{{2a}} - \dfrac{{kq}}{{12a}} - \dfrac{{kq}}{{4a}}$
On doing the LCM and calculating further we get3
${V_A} = \dfrac{{6kq - kq - 3kq}}{{12a}} = \dfrac{{2kq}}{{12a}}$
Hence we get the value of the potential at the surface of A as,
${V_A} = \dfrac{{kq}}{{6a}}$
Since ${V_C} = 0$
Therefore ${V_A} - {V_C} = \dfrac{{kq}}{{6a}}$
This is the difference in potential. So the correct option is D.
Note
The electric potential at a point in an electric field is the amount of work that is done in bringing a unit positive charge from infinity to that point. And when a body is charged it can attract and repulse an oppositely charged body. This shows the ability of a charged body to do work. This ability is called the potential of that body.
Recently Updated Pages
Questions & Answers - Ask your doubts

Master Class 9 Social Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

