
There are 6 chocolates of Nestle, 8 of Cadbury, 10 of Perks, and 9 of Munch. The number of ways in which a child can buy 7 chocolates, is
Answer
579.3k+ views
Hint: We will use some general formula i.e. the number of solutions of n non-negative integral variables lets say ${x_1},{x_2},{x_3},{x_4}..........{x_n}$ and their sum is P i.e.,${x_1} + {x_2} + {x_3} + {x_4} + .......... + {x_n} = P$. Then the number of solutions of the above equation is ${}^{P + n - 1}{C_{n - 1}}$. Then we’ll exclude those cases that will be contradicting the given data.
Complete step by step answer:
Given data:
Number of Nestle(N)=6
Number of Cadbury(C)=8
Number of Perk(P)=10
Number of Munch(M)=9
Now, we know that if there are n non-negative integral variables lets say ${x_1},{x_2},{x_3},{x_4}..........{x_n}$ and their sum is P ,
i.e.,${x_1} + {x_2} + {x_3} + {x_4} + .......... + {x_n} = P$
Then the number of solutions of the above equation is ${}^{P + n - 1}{C_{n - 1}}$ .
Now, we have to find the number of ways that the child can select 7 chocolates out of the given number of distinct chocolates.
We can write it as
$N + C + P + M = 7$
Where N, C, P, M are non-negative integers, but there N=6 therefore cannot select all the 7 nestle chocolates which means we have to subtract one solution out of the total number of solutions.
Then the number of ways that the child can select 7 chocolates will be ${}^{7 + 4 - 1}{C_{4 - 1}} - 1$
On simplifying we get,
$ = {}^{10}{C_3} - 1$
Using,${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
$ \Rightarrow {}^{10}{C_3} - 1 = \dfrac{{10!}}{{3!\left( {10 - 3} \right)!}} - 1$
$ = \dfrac{{10!}}{{3!7!}} - 1$
Using $n! = n(n - 1)!$
$ = \dfrac{{10 \times 9 \times 8 \times 7!}}{{3!7!}} - 1$
On cancelling common terms we get,
$ = \dfrac{{10 \times 9 \times 8}}{{3!}} - 1$
Expanding the value of \[3!\]
$ = \dfrac{{10 \times 9 \times 8}}{{3 \times 2 \times 1}} - 1$
On simplifying we get,
$ = 120 - 1$
$ = 119$
Hence, The number of ways in which a child can buy 7 chocolates is 119.
Note: Alternative method of this solution can be
First, we find the value of ${}^n{C_2} = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}$
Using $n! = n(n - 1)!$
$ \Rightarrow \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} = \dfrac{{n(n - 1)(n - 2)!}}{{2!\left( {n - 2} \right)!}}$
$ = \dfrac{{n(n - 1)}}{2}$, we’ll be using the further solution
We know that
$N + C + P + M = 7$,
When N=0
$C + P + M = 7$, then the number of the solution will be ${}^{7 + 3 - 1}{C_{3 - 1}}$
$ = {}^9{C_2}$
$ = \dfrac{{9 \times 8}}{2}$
$ = 36$
When N=1
$C + P + M = 6$, then the number of the solution will be ${}^{6 + 3 - 1}{C_{3 - 1}}$
$ = {}^8{C_2}$
$ = \dfrac{{8 \times 7}}{2}$
$ = 28$
When N=2
$C + P + M = 5$, then the number of the solution will be ${}^{5 + 3 - 1}{C_{3 - 1}}$
$ = {}^7{C_2}$
$ = \dfrac{{7 \times 6}}{2}$
$ = 21$
When N=3
$C + P + M = 4$, then the number of the solution will be ${}^{4 + 3 - 1}{C_{3 - 1}}$
$ = {}^6{C_2}$
$ = \dfrac{{6 \times 5}}{2}$
$ = 15$
When N=4
$C + P + M = 3$, then the number of the solution will be ${}^{3 + 3 - 1}{C_{3 - 1}}$
$ = {}^5{C_2}$
$ = \dfrac{{5 \times 4}}{2}$
$ = 10$
When N=5
$C + P + M = 2$, then the number of the solution will be ${}^{2 + 3 - 1}{C_{3 - 1}}$
$ = {}^4{C_2}$
$ = \dfrac{{4 \times 3}}{2}$
$ = 6$
When N=6
$C + P + M = 1$, then the number of the solution will be ${}^{1 + 3 - 1}{C_{3 - 1}}$
$ = {}^3{C_2}$
$ = \dfrac{{3 \times 2}}{2}$
$ = 3$
Therefore the total number of ways=36+28+21+15+10+6+3
=119
Complete step by step answer:
Given data:
Number of Nestle(N)=6
Number of Cadbury(C)=8
Number of Perk(P)=10
Number of Munch(M)=9
Now, we know that if there are n non-negative integral variables lets say ${x_1},{x_2},{x_3},{x_4}..........{x_n}$ and their sum is P ,
i.e.,${x_1} + {x_2} + {x_3} + {x_4} + .......... + {x_n} = P$
Then the number of solutions of the above equation is ${}^{P + n - 1}{C_{n - 1}}$ .
Now, we have to find the number of ways that the child can select 7 chocolates out of the given number of distinct chocolates.
We can write it as
$N + C + P + M = 7$
Where N, C, P, M are non-negative integers, but there N=6 therefore cannot select all the 7 nestle chocolates which means we have to subtract one solution out of the total number of solutions.
Then the number of ways that the child can select 7 chocolates will be ${}^{7 + 4 - 1}{C_{4 - 1}} - 1$
On simplifying we get,
$ = {}^{10}{C_3} - 1$
Using,${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
$ \Rightarrow {}^{10}{C_3} - 1 = \dfrac{{10!}}{{3!\left( {10 - 3} \right)!}} - 1$
$ = \dfrac{{10!}}{{3!7!}} - 1$
Using $n! = n(n - 1)!$
$ = \dfrac{{10 \times 9 \times 8 \times 7!}}{{3!7!}} - 1$
On cancelling common terms we get,
$ = \dfrac{{10 \times 9 \times 8}}{{3!}} - 1$
Expanding the value of \[3!\]
$ = \dfrac{{10 \times 9 \times 8}}{{3 \times 2 \times 1}} - 1$
On simplifying we get,
$ = 120 - 1$
$ = 119$
Hence, The number of ways in which a child can buy 7 chocolates is 119.
Note: Alternative method of this solution can be
First, we find the value of ${}^n{C_2} = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}$
Using $n! = n(n - 1)!$
$ \Rightarrow \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} = \dfrac{{n(n - 1)(n - 2)!}}{{2!\left( {n - 2} \right)!}}$
$ = \dfrac{{n(n - 1)}}{2}$, we’ll be using the further solution
We know that
$N + C + P + M = 7$,
When N=0
$C + P + M = 7$, then the number of the solution will be ${}^{7 + 3 - 1}{C_{3 - 1}}$
$ = {}^9{C_2}$
$ = \dfrac{{9 \times 8}}{2}$
$ = 36$
When N=1
$C + P + M = 6$, then the number of the solution will be ${}^{6 + 3 - 1}{C_{3 - 1}}$
$ = {}^8{C_2}$
$ = \dfrac{{8 \times 7}}{2}$
$ = 28$
When N=2
$C + P + M = 5$, then the number of the solution will be ${}^{5 + 3 - 1}{C_{3 - 1}}$
$ = {}^7{C_2}$
$ = \dfrac{{7 \times 6}}{2}$
$ = 21$
When N=3
$C + P + M = 4$, then the number of the solution will be ${}^{4 + 3 - 1}{C_{3 - 1}}$
$ = {}^6{C_2}$
$ = \dfrac{{6 \times 5}}{2}$
$ = 15$
When N=4
$C + P + M = 3$, then the number of the solution will be ${}^{3 + 3 - 1}{C_{3 - 1}}$
$ = {}^5{C_2}$
$ = \dfrac{{5 \times 4}}{2}$
$ = 10$
When N=5
$C + P + M = 2$, then the number of the solution will be ${}^{2 + 3 - 1}{C_{3 - 1}}$
$ = {}^4{C_2}$
$ = \dfrac{{4 \times 3}}{2}$
$ = 6$
When N=6
$C + P + M = 1$, then the number of the solution will be ${}^{1 + 3 - 1}{C_{3 - 1}}$
$ = {}^3{C_2}$
$ = \dfrac{{3 \times 2}}{2}$
$ = 3$
Therefore the total number of ways=36+28+21+15+10+6+3
=119
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

