
There are 6 chocolates of Nestle, 8 of Cadbury, 10 of Perks, and 9 of Munch. The number of ways in which a child can buy 7 chocolates, is
Answer
579.9k+ views
Hint: We will use some general formula i.e. the number of solutions of n non-negative integral variables lets say ${x_1},{x_2},{x_3},{x_4}..........{x_n}$ and their sum is P i.e.,${x_1} + {x_2} + {x_3} + {x_4} + .......... + {x_n} = P$. Then the number of solutions of the above equation is ${}^{P + n - 1}{C_{n - 1}}$. Then we’ll exclude those cases that will be contradicting the given data.
Complete step by step answer:
Given data:
Number of Nestle(N)=6
Number of Cadbury(C)=8
Number of Perk(P)=10
Number of Munch(M)=9
Now, we know that if there are n non-negative integral variables lets say ${x_1},{x_2},{x_3},{x_4}..........{x_n}$ and their sum is P ,
i.e.,${x_1} + {x_2} + {x_3} + {x_4} + .......... + {x_n} = P$
Then the number of solutions of the above equation is ${}^{P + n - 1}{C_{n - 1}}$ .
Now, we have to find the number of ways that the child can select 7 chocolates out of the given number of distinct chocolates.
We can write it as
$N + C + P + M = 7$
Where N, C, P, M are non-negative integers, but there N=6 therefore cannot select all the 7 nestle chocolates which means we have to subtract one solution out of the total number of solutions.
Then the number of ways that the child can select 7 chocolates will be ${}^{7 + 4 - 1}{C_{4 - 1}} - 1$
On simplifying we get,
$ = {}^{10}{C_3} - 1$
Using,${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
$ \Rightarrow {}^{10}{C_3} - 1 = \dfrac{{10!}}{{3!\left( {10 - 3} \right)!}} - 1$
$ = \dfrac{{10!}}{{3!7!}} - 1$
Using $n! = n(n - 1)!$
$ = \dfrac{{10 \times 9 \times 8 \times 7!}}{{3!7!}} - 1$
On cancelling common terms we get,
$ = \dfrac{{10 \times 9 \times 8}}{{3!}} - 1$
Expanding the value of \[3!\]
$ = \dfrac{{10 \times 9 \times 8}}{{3 \times 2 \times 1}} - 1$
On simplifying we get,
$ = 120 - 1$
$ = 119$
Hence, The number of ways in which a child can buy 7 chocolates is 119.
Note: Alternative method of this solution can be
First, we find the value of ${}^n{C_2} = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}$
Using $n! = n(n - 1)!$
$ \Rightarrow \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} = \dfrac{{n(n - 1)(n - 2)!}}{{2!\left( {n - 2} \right)!}}$
$ = \dfrac{{n(n - 1)}}{2}$, we’ll be using the further solution
We know that
$N + C + P + M = 7$,
When N=0
$C + P + M = 7$, then the number of the solution will be ${}^{7 + 3 - 1}{C_{3 - 1}}$
$ = {}^9{C_2}$
$ = \dfrac{{9 \times 8}}{2}$
$ = 36$
When N=1
$C + P + M = 6$, then the number of the solution will be ${}^{6 + 3 - 1}{C_{3 - 1}}$
$ = {}^8{C_2}$
$ = \dfrac{{8 \times 7}}{2}$
$ = 28$
When N=2
$C + P + M = 5$, then the number of the solution will be ${}^{5 + 3 - 1}{C_{3 - 1}}$
$ = {}^7{C_2}$
$ = \dfrac{{7 \times 6}}{2}$
$ = 21$
When N=3
$C + P + M = 4$, then the number of the solution will be ${}^{4 + 3 - 1}{C_{3 - 1}}$
$ = {}^6{C_2}$
$ = \dfrac{{6 \times 5}}{2}$
$ = 15$
When N=4
$C + P + M = 3$, then the number of the solution will be ${}^{3 + 3 - 1}{C_{3 - 1}}$
$ = {}^5{C_2}$
$ = \dfrac{{5 \times 4}}{2}$
$ = 10$
When N=5
$C + P + M = 2$, then the number of the solution will be ${}^{2 + 3 - 1}{C_{3 - 1}}$
$ = {}^4{C_2}$
$ = \dfrac{{4 \times 3}}{2}$
$ = 6$
When N=6
$C + P + M = 1$, then the number of the solution will be ${}^{1 + 3 - 1}{C_{3 - 1}}$
$ = {}^3{C_2}$
$ = \dfrac{{3 \times 2}}{2}$
$ = 3$
Therefore the total number of ways=36+28+21+15+10+6+3
=119
Complete step by step answer:
Given data:
Number of Nestle(N)=6
Number of Cadbury(C)=8
Number of Perk(P)=10
Number of Munch(M)=9
Now, we know that if there are n non-negative integral variables lets say ${x_1},{x_2},{x_3},{x_4}..........{x_n}$ and their sum is P ,
i.e.,${x_1} + {x_2} + {x_3} + {x_4} + .......... + {x_n} = P$
Then the number of solutions of the above equation is ${}^{P + n - 1}{C_{n - 1}}$ .
Now, we have to find the number of ways that the child can select 7 chocolates out of the given number of distinct chocolates.
We can write it as
$N + C + P + M = 7$
Where N, C, P, M are non-negative integers, but there N=6 therefore cannot select all the 7 nestle chocolates which means we have to subtract one solution out of the total number of solutions.
Then the number of ways that the child can select 7 chocolates will be ${}^{7 + 4 - 1}{C_{4 - 1}} - 1$
On simplifying we get,
$ = {}^{10}{C_3} - 1$
Using,${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
$ \Rightarrow {}^{10}{C_3} - 1 = \dfrac{{10!}}{{3!\left( {10 - 3} \right)!}} - 1$
$ = \dfrac{{10!}}{{3!7!}} - 1$
Using $n! = n(n - 1)!$
$ = \dfrac{{10 \times 9 \times 8 \times 7!}}{{3!7!}} - 1$
On cancelling common terms we get,
$ = \dfrac{{10 \times 9 \times 8}}{{3!}} - 1$
Expanding the value of \[3!\]
$ = \dfrac{{10 \times 9 \times 8}}{{3 \times 2 \times 1}} - 1$
On simplifying we get,
$ = 120 - 1$
$ = 119$
Hence, The number of ways in which a child can buy 7 chocolates is 119.
Note: Alternative method of this solution can be
First, we find the value of ${}^n{C_2} = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}$
Using $n! = n(n - 1)!$
$ \Rightarrow \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} = \dfrac{{n(n - 1)(n - 2)!}}{{2!\left( {n - 2} \right)!}}$
$ = \dfrac{{n(n - 1)}}{2}$, we’ll be using the further solution
We know that
$N + C + P + M = 7$,
When N=0
$C + P + M = 7$, then the number of the solution will be ${}^{7 + 3 - 1}{C_{3 - 1}}$
$ = {}^9{C_2}$
$ = \dfrac{{9 \times 8}}{2}$
$ = 36$
When N=1
$C + P + M = 6$, then the number of the solution will be ${}^{6 + 3 - 1}{C_{3 - 1}}$
$ = {}^8{C_2}$
$ = \dfrac{{8 \times 7}}{2}$
$ = 28$
When N=2
$C + P + M = 5$, then the number of the solution will be ${}^{5 + 3 - 1}{C_{3 - 1}}$
$ = {}^7{C_2}$
$ = \dfrac{{7 \times 6}}{2}$
$ = 21$
When N=3
$C + P + M = 4$, then the number of the solution will be ${}^{4 + 3 - 1}{C_{3 - 1}}$
$ = {}^6{C_2}$
$ = \dfrac{{6 \times 5}}{2}$
$ = 15$
When N=4
$C + P + M = 3$, then the number of the solution will be ${}^{3 + 3 - 1}{C_{3 - 1}}$
$ = {}^5{C_2}$
$ = \dfrac{{5 \times 4}}{2}$
$ = 10$
When N=5
$C + P + M = 2$, then the number of the solution will be ${}^{2 + 3 - 1}{C_{3 - 1}}$
$ = {}^4{C_2}$
$ = \dfrac{{4 \times 3}}{2}$
$ = 6$
When N=6
$C + P + M = 1$, then the number of the solution will be ${}^{1 + 3 - 1}{C_{3 - 1}}$
$ = {}^3{C_2}$
$ = \dfrac{{3 \times 2}}{2}$
$ = 3$
Therefore the total number of ways=36+28+21+15+10+6+3
=119
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

