
The volume of the parallelepiped whose sides is given by $OA=2\hat{i}-2\hat{j}$, $OB=\hat{i}+\hat{j}-\hat{k}$ and $OC=3\hat{i}-\hat{k}$ is \[\]
A.$\dfrac{4}{13}$ \[\]
B.4 \[\]
C.$\dfrac{2}{7}$ \[\]
D.2 \[\]
Answer
563.7k+ views
Hint: We know that the parallelepiped whose sides are given as vectors say $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are given the scalar triple product of the vectors$\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)$. We denote $OA=\overrightarrow{a},OB=\overrightarrow{b},OC=\overrightarrow{c}$ and then take the determinant of the components in orthogonal unit vectors to find the scalar product. \[\]
Complete step by step answer:
We know that the dot product of two vectors $\vec{a}$ and $\vec{b}$ is denoted as $\vec{a}\cdot \vec{b}$ and is given by $\vec{a}\cdot \vec{b}=\left| {\vec{a}} \right|\left| {\vec{b}} \right|\cos \theta $ where $\theta $ is the angle between the vectors $\vec{a}$ and$\vec{b}$. We also know that $\hat{i}$,$\hat{j}$ and $\hat{k}$ are unit vectors(vectors with magnitude 1) along $x,y$ and $z$ axes respectively. So the magnitude of these vectors is$\left| {\hat{i}} \right|=\left| {\hat{j}} \right|=\left| {\hat{k}} \right|=1$. The vectors just like their axes are perpendicular to each other which means any angle among$\hat{i}$,$\hat{j}$ and $\hat{k}$is ${{90}^{\circ }}.$ So $\hat{i}\cdot \hat{i}=\hat{j}\cdot \hat{j}=\hat{k}\cdot \hat{k}=1\cdot 1\cdot \cos {{0}^{\circ }}=1$ and $\hat{i}\cdot \hat{j}=\hat{j}\cdot \hat{i}=\hat{j}\cdot \hat{k}=\hat{k}\cdot \hat{j}=\hat{i}\cdot \hat{k}=\hat{k}\cdot \hat{i}=1\cdot 1\cdot \cos {{90}^{\circ }}=0$.
The dot product of two vectors written in components of unit orthogonal vectors$\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$ and $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ can also be given by
\[\overrightarrow{a}\cdot \overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\]
The cross product of two vectors written in components of unit orthogonal vectors$\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$ and $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ can also be given by
\[\overrightarrow{a}\times \overrightarrow{b}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|\]
The scalar triple product of three 3 dimensional vectors is obtained by taking the dot product of a vector with cross product of two other vectors. If $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are three vectors in three dimension written in components of unit orthogonal vectors$\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$, $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ and $\overrightarrow{c}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ then the scalar triple product is defined as
\[\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
The geometrical interpretation of scalar triple product is the volume of the parallelepiped whose sides are represented by vectors$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$. We are given in the question that sides of the parallelepiped are given by $OA=2\hat{i}-2\hat{j}$ $OB=\hat{i}+\hat{j}-\hat{k}$ and $OC=3\hat{i}-\hat{k}$. Let us denote $OA=\overrightarrow{a},OB=\overrightarrow{b},OC=\overrightarrow{c}$.
The volume of the parallelepiped can be obtained by taking the scalar triple product of vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$. So we have,
\[\begin{align}
& \overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
& \Rightarrow \overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
2 & -2 & 0 \\
1 & 1 & -1 \\
3 & 0 & -1 \\
\end{matrix} \right| \\
\end{align}\]
We expand by first row to have,
\[\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( -1-0 \right)-\left( -2 \right)\left( -1-\left( -3 \right) \right)=-2+2\times 2=2\]
So, the correct answer is “Option D”.
Note: We note that the scalar triple product follows circular shift in operands which means $\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\overrightarrow{b}\cdot \left( \overrightarrow{c}\times \overrightarrow{a} \right)=\overrightarrow{c}\cdot \left( \overrightarrow{a}\times \overrightarrow{b} \right)$ and also allows swapping operation once without changing the value $\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot c$. This is why we can assign $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ with $OA,OB,OC$ randomly and find the volume. A parallelepiped with perpendicular edges is called cuboid and a cuboid with equal sides is called cube.
Complete step by step answer:
We know that the dot product of two vectors $\vec{a}$ and $\vec{b}$ is denoted as $\vec{a}\cdot \vec{b}$ and is given by $\vec{a}\cdot \vec{b}=\left| {\vec{a}} \right|\left| {\vec{b}} \right|\cos \theta $ where $\theta $ is the angle between the vectors $\vec{a}$ and$\vec{b}$. We also know that $\hat{i}$,$\hat{j}$ and $\hat{k}$ are unit vectors(vectors with magnitude 1) along $x,y$ and $z$ axes respectively. So the magnitude of these vectors is$\left| {\hat{i}} \right|=\left| {\hat{j}} \right|=\left| {\hat{k}} \right|=1$. The vectors just like their axes are perpendicular to each other which means any angle among$\hat{i}$,$\hat{j}$ and $\hat{k}$is ${{90}^{\circ }}.$ So $\hat{i}\cdot \hat{i}=\hat{j}\cdot \hat{j}=\hat{k}\cdot \hat{k}=1\cdot 1\cdot \cos {{0}^{\circ }}=1$ and $\hat{i}\cdot \hat{j}=\hat{j}\cdot \hat{i}=\hat{j}\cdot \hat{k}=\hat{k}\cdot \hat{j}=\hat{i}\cdot \hat{k}=\hat{k}\cdot \hat{i}=1\cdot 1\cdot \cos {{90}^{\circ }}=0$.
The dot product of two vectors written in components of unit orthogonal vectors$\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$ and $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ can also be given by
\[\overrightarrow{a}\cdot \overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\]
The cross product of two vectors written in components of unit orthogonal vectors$\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$ and $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ can also be given by
\[\overrightarrow{a}\times \overrightarrow{b}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|\]
The scalar triple product of three 3 dimensional vectors is obtained by taking the dot product of a vector with cross product of two other vectors. If $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are three vectors in three dimension written in components of unit orthogonal vectors$\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$, $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ and $\overrightarrow{c}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ then the scalar triple product is defined as
\[\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
The geometrical interpretation of scalar triple product is the volume of the parallelepiped whose sides are represented by vectors$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$. We are given in the question that sides of the parallelepiped are given by $OA=2\hat{i}-2\hat{j}$ $OB=\hat{i}+\hat{j}-\hat{k}$ and $OC=3\hat{i}-\hat{k}$. Let us denote $OA=\overrightarrow{a},OB=\overrightarrow{b},OC=\overrightarrow{c}$.
The volume of the parallelepiped can be obtained by taking the scalar triple product of vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$. So we have,
\[\begin{align}
& \overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
& \Rightarrow \overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
2 & -2 & 0 \\
1 & 1 & -1 \\
3 & 0 & -1 \\
\end{matrix} \right| \\
\end{align}\]
We expand by first row to have,
\[\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( -1-0 \right)-\left( -2 \right)\left( -1-\left( -3 \right) \right)=-2+2\times 2=2\]
So, the correct answer is “Option D”.
Note: We note that the scalar triple product follows circular shift in operands which means $\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\overrightarrow{b}\cdot \left( \overrightarrow{c}\times \overrightarrow{a} \right)=\overrightarrow{c}\cdot \left( \overrightarrow{a}\times \overrightarrow{b} \right)$ and also allows swapping operation once without changing the value $\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot c$. This is why we can assign $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ with $OA,OB,OC$ randomly and find the volume. A parallelepiped with perpendicular edges is called cuboid and a cuboid with equal sides is called cube.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is virtual and erect image ?

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Write any three uses of polaroids class 12 physics CBSE

