
The volume of the parallelepiped whose sides is given by $OA=2\hat{i}-2\hat{j}$, $OB=\hat{i}+\hat{j}-\hat{k}$ and $OC=3\hat{i}-\hat{k}$ is \[\]
A.$\dfrac{4}{13}$ \[\]
B.4 \[\]
C.$\dfrac{2}{7}$ \[\]
D.2 \[\]
Answer
573.3k+ views
Hint: We know that the parallelepiped whose sides are given as vectors say $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are given the scalar triple product of the vectors$\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)$. We denote $OA=\overrightarrow{a},OB=\overrightarrow{b},OC=\overrightarrow{c}$ and then take the determinant of the components in orthogonal unit vectors to find the scalar product. \[\]
Complete step by step answer:
We know that the dot product of two vectors $\vec{a}$ and $\vec{b}$ is denoted as $\vec{a}\cdot \vec{b}$ and is given by $\vec{a}\cdot \vec{b}=\left| {\vec{a}} \right|\left| {\vec{b}} \right|\cos \theta $ where $\theta $ is the angle between the vectors $\vec{a}$ and$\vec{b}$. We also know that $\hat{i}$,$\hat{j}$ and $\hat{k}$ are unit vectors(vectors with magnitude 1) along $x,y$ and $z$ axes respectively. So the magnitude of these vectors is$\left| {\hat{i}} \right|=\left| {\hat{j}} \right|=\left| {\hat{k}} \right|=1$. The vectors just like their axes are perpendicular to each other which means any angle among$\hat{i}$,$\hat{j}$ and $\hat{k}$is ${{90}^{\circ }}.$ So $\hat{i}\cdot \hat{i}=\hat{j}\cdot \hat{j}=\hat{k}\cdot \hat{k}=1\cdot 1\cdot \cos {{0}^{\circ }}=1$ and $\hat{i}\cdot \hat{j}=\hat{j}\cdot \hat{i}=\hat{j}\cdot \hat{k}=\hat{k}\cdot \hat{j}=\hat{i}\cdot \hat{k}=\hat{k}\cdot \hat{i}=1\cdot 1\cdot \cos {{90}^{\circ }}=0$.
The dot product of two vectors written in components of unit orthogonal vectors$\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$ and $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ can also be given by
\[\overrightarrow{a}\cdot \overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\]
The cross product of two vectors written in components of unit orthogonal vectors$\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$ and $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ can also be given by
\[\overrightarrow{a}\times \overrightarrow{b}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|\]
The scalar triple product of three 3 dimensional vectors is obtained by taking the dot product of a vector with cross product of two other vectors. If $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are three vectors in three dimension written in components of unit orthogonal vectors$\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$, $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ and $\overrightarrow{c}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ then the scalar triple product is defined as
\[\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
The geometrical interpretation of scalar triple product is the volume of the parallelepiped whose sides are represented by vectors$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$. We are given in the question that sides of the parallelepiped are given by $OA=2\hat{i}-2\hat{j}$ $OB=\hat{i}+\hat{j}-\hat{k}$ and $OC=3\hat{i}-\hat{k}$. Let us denote $OA=\overrightarrow{a},OB=\overrightarrow{b},OC=\overrightarrow{c}$.
The volume of the parallelepiped can be obtained by taking the scalar triple product of vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$. So we have,
\[\begin{align}
& \overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
& \Rightarrow \overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
2 & -2 & 0 \\
1 & 1 & -1 \\
3 & 0 & -1 \\
\end{matrix} \right| \\
\end{align}\]
We expand by first row to have,
\[\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( -1-0 \right)-\left( -2 \right)\left( -1-\left( -3 \right) \right)=-2+2\times 2=2\]
So, the correct answer is “Option D”.
Note: We note that the scalar triple product follows circular shift in operands which means $\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\overrightarrow{b}\cdot \left( \overrightarrow{c}\times \overrightarrow{a} \right)=\overrightarrow{c}\cdot \left( \overrightarrow{a}\times \overrightarrow{b} \right)$ and also allows swapping operation once without changing the value $\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot c$. This is why we can assign $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ with $OA,OB,OC$ randomly and find the volume. A parallelepiped with perpendicular edges is called cuboid and a cuboid with equal sides is called cube.
Complete step by step answer:
We know that the dot product of two vectors $\vec{a}$ and $\vec{b}$ is denoted as $\vec{a}\cdot \vec{b}$ and is given by $\vec{a}\cdot \vec{b}=\left| {\vec{a}} \right|\left| {\vec{b}} \right|\cos \theta $ where $\theta $ is the angle between the vectors $\vec{a}$ and$\vec{b}$. We also know that $\hat{i}$,$\hat{j}$ and $\hat{k}$ are unit vectors(vectors with magnitude 1) along $x,y$ and $z$ axes respectively. So the magnitude of these vectors is$\left| {\hat{i}} \right|=\left| {\hat{j}} \right|=\left| {\hat{k}} \right|=1$. The vectors just like their axes are perpendicular to each other which means any angle among$\hat{i}$,$\hat{j}$ and $\hat{k}$is ${{90}^{\circ }}.$ So $\hat{i}\cdot \hat{i}=\hat{j}\cdot \hat{j}=\hat{k}\cdot \hat{k}=1\cdot 1\cdot \cos {{0}^{\circ }}=1$ and $\hat{i}\cdot \hat{j}=\hat{j}\cdot \hat{i}=\hat{j}\cdot \hat{k}=\hat{k}\cdot \hat{j}=\hat{i}\cdot \hat{k}=\hat{k}\cdot \hat{i}=1\cdot 1\cdot \cos {{90}^{\circ }}=0$.
The dot product of two vectors written in components of unit orthogonal vectors$\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$ and $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ can also be given by
\[\overrightarrow{a}\cdot \overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\]
The cross product of two vectors written in components of unit orthogonal vectors$\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$ and $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ can also be given by
\[\overrightarrow{a}\times \overrightarrow{b}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|\]
The scalar triple product of three 3 dimensional vectors is obtained by taking the dot product of a vector with cross product of two other vectors. If $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are three vectors in three dimension written in components of unit orthogonal vectors$\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$, $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ and $\overrightarrow{c}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ then the scalar triple product is defined as
\[\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
The geometrical interpretation of scalar triple product is the volume of the parallelepiped whose sides are represented by vectors$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$. We are given in the question that sides of the parallelepiped are given by $OA=2\hat{i}-2\hat{j}$ $OB=\hat{i}+\hat{j}-\hat{k}$ and $OC=3\hat{i}-\hat{k}$. Let us denote $OA=\overrightarrow{a},OB=\overrightarrow{b},OC=\overrightarrow{c}$.
The volume of the parallelepiped can be obtained by taking the scalar triple product of vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$. So we have,
\[\begin{align}
& \overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
& \Rightarrow \overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
2 & -2 & 0 \\
1 & 1 & -1 \\
3 & 0 & -1 \\
\end{matrix} \right| \\
\end{align}\]
We expand by first row to have,
\[\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( -1-0 \right)-\left( -2 \right)\left( -1-\left( -3 \right) \right)=-2+2\times 2=2\]
So, the correct answer is “Option D”.
Note: We note that the scalar triple product follows circular shift in operands which means $\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\overrightarrow{b}\cdot \left( \overrightarrow{c}\times \overrightarrow{a} \right)=\overrightarrow{c}\cdot \left( \overrightarrow{a}\times \overrightarrow{b} \right)$ and also allows swapping operation once without changing the value $\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot c$. This is why we can assign $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ with $OA,OB,OC$ randomly and find the volume. A parallelepiped with perpendicular edges is called cuboid and a cuboid with equal sides is called cube.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

