
The volume of solid obtained by revolving the area of the ellipse about major and minor axes are in the ratio.
Answer
491.1k+ views
Hint: In this question, we are given equation of ellipse as . We need to find the ratio of volume of solid obtained by revolving the area of the ellipse about major and minor axes. Center of the ellipse is at origin, so we will find a volume of solid revolving about the x axis and y axis. Volume of any solid revolving an area given by equation g(x,y) about x axis is equal to where y = f(x) and a,b are points on x axis where g(x,y) cuts. Similarly, about y axis volume is equal to where x = f(y) and a,b are points on y axis where g(x,y) cuts.
Complete step by step answer:
Here we are given the equation of the ellipse as .
Let us first draw a diagram for this ellipse. We have,
We need to find the volume of solid obtained by revolving the area of the ellipse about the major axis and minor axis. From the diagram we can see that, the major axis is the x axis and minor axis is the y axis.
We know volume of solid when equation g(x,y) is revolved about x axis is given by where y = f(x), a,b are points where g(x,y) cuts x axis.
So let us use this formula, here .
Calculating value of we get,
.
From diagram a,b are -a,a respectively, so we have
.
We know so we have,
.
Solving further we get,
Here volume is when revolved around the major axis.
When a solid is revolved around y axis we have the formula .
Let us find the value of .
.
From diagram a,b are -b, b respectively so we have,
.
Solving the integration we have,
.
Hence volume is when revolved around a minor axis.
Now let us take the ratio of the volume about the major axis to the volume about the minor axis. We have
Hence the required ratio is b:a.
Note: Students should keep in mind the formula of volume of solid when area is revolved about x axis and y axis. Keep in mind the formula of integration. Try to draw a diagram first for finding the required points (a,b). Take care of signs while solving the integration. Do not get confused between the major axis and the minor axis.
Complete step by step answer:
Here we are given the equation of the ellipse as
Let us first draw a diagram for this ellipse. We have,

We need to find the volume of solid obtained by revolving the area of the ellipse about the major axis and minor axis. From the diagram we can see that, the major axis is the x axis and minor axis is the y axis.
We know volume of solid when equation g(x,y) is revolved about x axis is given by
So let us use this formula, here
Calculating value of
From diagram a,b are -a,a respectively, so we have
We know
Solving further we get,
Here volume is
When a solid is revolved around y axis we have the formula
Let us find the value of
From diagram a,b are -b, b respectively so we have,
Solving the integration we have,
Hence volume is
Now let us take the ratio of the volume about the major axis to the volume about the minor axis. We have
Hence the required ratio is b:a.
Note: Students should keep in mind the formula of volume of solid when area is revolved about x axis and y axis. Keep in mind the formula of integration. Try to draw a diagram first for finding the required points (a,b). Take care of signs while solving the integration. Do not get confused between the major axis and the minor axis.
Latest Vedantu courses for you
Grade 10 | MAHARASHTRABOARD | SCHOOL | English
Vedantu 10 Maharashtra Pro Lite (2025-26)
School Full course for MAHARASHTRABOARD students
₹33,300 per year
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
