
The V-I characteristics of a diode are shown in the figure. The ratio of forward to reverse bias resistance is:
A. \[100\]
B. \[{10^{ - 6}}\]
C. \[10\]
D. \[{10^6}\]
Answer
552.3k+ views
Hint:The forward I-V characteristic, that is when the diode is forward biased, the anode is positive with respect to cathode. They given when the current is positive and the voltage is also positive. On the other hand, the reverse I-V characteristics are given when the cathode is positive with respect to anode. Here, the current is positive and the voltage is negative.
Formula Used:
Forward bias resistance \[{R_f}\] is given as:\[{R_f} = \dfrac{{\Delta {V_f}}}{{\Delta {I_f}}}\]
where,\[\Delta {V_f}\]is the difference between forward bias voltages,
\[\Delta {I_f}\] is the difference between currents corresponding to particular forward bias voltages.
Reverse bias resistance \[{R_r}\] is given as:\[{R_r} = \dfrac{{\Delta {V_r}}}{{\Delta {I_r}}}\]
where,\[\Delta {V_r}\]is the difference between reverse bias voltages,
\[\Delta {I_r}\] is the difference between currents corresponding to particular reverse bias voltages.
Complete step by step answer:
The resistance offered by a diode in forward bias is very small. This is called forward resistance. On the other hand, a diode offers very high resistance when it is in reverse bias.This is called reverse resistance.
The formula for forward bias resistance \[{R_f}\] is given as:
\[{R_f} = \dfrac{{\Delta {V_f}}}{{\Delta {I_f}}}\]\[ \to \]................(1)
where,\[\Delta {V_f}\]is the difference between forward bias voltages and \[\Delta {I_f}\] is the difference between currents corresponding to particular voltages.
From the given diagram, the voltages run from 0.7 Volts to 0.8 Volts. On the other hand, current ranges from 10 to 20 milli-Amperes. Therefore,
\[\Delta {I_f} = 20 - 10 \\
\Rightarrow \Delta {I_f} = 10mA \\
\Rightarrow \Delta {I_f} = 10 \times {10^{ - 3}}A\]
\[\Rightarrow \Delta {V_f} = 0.8 - 0.7 \\
\Rightarrow \Delta {V_f} = 0.1V\]
Substituting in equation (1)
\[{R_f} = \dfrac{{\Delta {V_f}}}{{\Delta {I_f}}} \\
\Rightarrow {R_f} = \dfrac{{0.1}}{{10 \times {{10}^{ - 3}}}}\Omega \\
\Rightarrow {R_f} = 10\Omega \]
The formula for reverse bias resistance \[{R_r}\] is given as:
\[{R_r} = \dfrac{{\Delta {V_r}}}{{\Delta {I_r}}}\]\[ \to \]................(2)
where,\[\Delta {V_r}\]is the difference between reverse bias voltages and \[\Delta {I_r}\] is the difference between currents corresponding to particular voltages.
Also according to the diagram, the reverse bias current will be
\[{R_r} = \dfrac{{\Delta {V_r}}}{{\Delta {I_r}}} \\
\Rightarrow {R_r} = \dfrac{{10}}{{{{10}^{ - 6}}}}\Omega \\
\Rightarrow {R_r} = {10^7}\Omega \]
Then, the ratio of forward bias to reverse bias resistance can be written as:
\[Ratio = \dfrac{{{R_f}}}{{{R_r}}} \\
\Rightarrow Ratio = \dfrac{{10}}{{{{10}^7}}}\Omega \\
\therefore Ratio = {10^{ - 6}}\Omega \]
Hence, option B is the correct answer.
Note:The formula for reverse bias resistance and forward bias resistance can be written with the help of Ohm’s Law. Ohm’s law is given by
\[V = IR\]
where \[V\] is the voltage, \[I\] is the current and \[R\] is the resistance.
Thus, resistance can be written as \[R = \dfrac{V}{I}\]
Thus if one writes independently in terms of forward and reverse bias resistance, this equation is,
\[{R_r} = \dfrac{{\Delta {V_r}}}{{\Delta {I_r}}}\]
And \[{R_r} = \dfrac{{\Delta {V_r}}}{{\Delta {I_r}}}\] respectively.
Formula Used:
Forward bias resistance \[{R_f}\] is given as:\[{R_f} = \dfrac{{\Delta {V_f}}}{{\Delta {I_f}}}\]
where,\[\Delta {V_f}\]is the difference between forward bias voltages,
\[\Delta {I_f}\] is the difference between currents corresponding to particular forward bias voltages.
Reverse bias resistance \[{R_r}\] is given as:\[{R_r} = \dfrac{{\Delta {V_r}}}{{\Delta {I_r}}}\]
where,\[\Delta {V_r}\]is the difference between reverse bias voltages,
\[\Delta {I_r}\] is the difference between currents corresponding to particular reverse bias voltages.
Complete step by step answer:
The resistance offered by a diode in forward bias is very small. This is called forward resistance. On the other hand, a diode offers very high resistance when it is in reverse bias.This is called reverse resistance.
The formula for forward bias resistance \[{R_f}\] is given as:
\[{R_f} = \dfrac{{\Delta {V_f}}}{{\Delta {I_f}}}\]\[ \to \]................(1)
where,\[\Delta {V_f}\]is the difference between forward bias voltages and \[\Delta {I_f}\] is the difference between currents corresponding to particular voltages.
From the given diagram, the voltages run from 0.7 Volts to 0.8 Volts. On the other hand, current ranges from 10 to 20 milli-Amperes. Therefore,
\[\Delta {I_f} = 20 - 10 \\
\Rightarrow \Delta {I_f} = 10mA \\
\Rightarrow \Delta {I_f} = 10 \times {10^{ - 3}}A\]
\[\Rightarrow \Delta {V_f} = 0.8 - 0.7 \\
\Rightarrow \Delta {V_f} = 0.1V\]
Substituting in equation (1)
\[{R_f} = \dfrac{{\Delta {V_f}}}{{\Delta {I_f}}} \\
\Rightarrow {R_f} = \dfrac{{0.1}}{{10 \times {{10}^{ - 3}}}}\Omega \\
\Rightarrow {R_f} = 10\Omega \]
The formula for reverse bias resistance \[{R_r}\] is given as:
\[{R_r} = \dfrac{{\Delta {V_r}}}{{\Delta {I_r}}}\]\[ \to \]................(2)
where,\[\Delta {V_r}\]is the difference between reverse bias voltages and \[\Delta {I_r}\] is the difference between currents corresponding to particular voltages.
Also according to the diagram, the reverse bias current will be
\[{R_r} = \dfrac{{\Delta {V_r}}}{{\Delta {I_r}}} \\
\Rightarrow {R_r} = \dfrac{{10}}{{{{10}^{ - 6}}}}\Omega \\
\Rightarrow {R_r} = {10^7}\Omega \]
Then, the ratio of forward bias to reverse bias resistance can be written as:
\[Ratio = \dfrac{{{R_f}}}{{{R_r}}} \\
\Rightarrow Ratio = \dfrac{{10}}{{{{10}^7}}}\Omega \\
\therefore Ratio = {10^{ - 6}}\Omega \]
Hence, option B is the correct answer.
Note:The formula for reverse bias resistance and forward bias resistance can be written with the help of Ohm’s Law. Ohm’s law is given by
\[V = IR\]
where \[V\] is the voltage, \[I\] is the current and \[R\] is the resistance.
Thus, resistance can be written as \[R = \dfrac{V}{I}\]
Thus if one writes independently in terms of forward and reverse bias resistance, this equation is,
\[{R_r} = \dfrac{{\Delta {V_r}}}{{\Delta {I_r}}}\]
And \[{R_r} = \dfrac{{\Delta {V_r}}}{{\Delta {I_r}}}\] respectively.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

