
The vertices of $\Delta ABC$ are $A(4,6),B(1,5),C(7,2)$. A line is drawn to intersect sides $AB$ and $AC$ at $D$ and $E$ respectively such that $\dfrac{{AD}}{{AB}} = \dfrac{{AE}}{{AC}} = \dfrac{1}{4}$. Calculate the area of the $\Delta ADE$ and compare it with the area of $\Delta ABC$.
Answer
574.8k+ views
Hint: Since $\dfrac{{AD}}{{AB}} = \dfrac{{AE}}{{AC}} = \dfrac{1}{4}$, therefore by solving this equation and then by applying the section formula we will get the vertices and we can find the area of $\Delta ADE$.
Complete step-by-step answer:
From the above equation we get-
$\dfrac{{AE}}{{AC}} = \dfrac{1}{4}$………..(i)
$\dfrac{{AD}}{{AB}} = \dfrac{1}{4}$………..(ii)
By solving equation (i) we get-
$4AE = AC$
From the diagram we can easily understood that $AC = AE + EC$
Now we can write, $4AE = AE + EC$
Taking RHS \[{\text{AE}}\]has LHS, we get
$4AE - AE = EC$
On subtracting we get,
$3AE = EC$
We can write the above step in fraction type,
$\dfrac{{AE}}{{EC}} = \dfrac{1}{3}$
So it is clear the point $E$ divides the line $AC$ in the ratio of $1:3$ internally.
Now, we have to find the coordinates of E, by using section formula,
That is $\left( {\dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}} \right)$
Here $\left( {{{\text{m}}_{\text{1}}}{\text{:}}{{\text{m}}_{\text{2}}}} \right) = \left( {1:3} \right)$
$\left( {{x_{\text{1}}}{\text{,}}{{\text{y}}_1}} \right) = \left( {4,6} \right)$
$\left( {{x_2}{\text{,}}{{\text{y}}_2}} \right) = \left( {7,2} \right)$
Coordinates of $E = \left( {\dfrac{{1(7) + (3)(4)}}{{1 + 3}},\dfrac{{1(2) + 3(6)}}{{1 + 3}}} \right)$
On some simplification we get,
$ = \left( {\dfrac{{7 + 12}}{4},\dfrac{{2 + 18}}{4}} \right)$
Let us add the numerator term we get,
$ = \left( {\dfrac{{19}}{4},\dfrac{{20}}{4}} \right)$
Divided the terms we get,
$ = {\text{E}}\left( {\dfrac{{19}}{4},5} \right)$
Also we have to find Coordinates of $D$by using the section formula,
Here $\left( {{{\text{m}}_{\text{1}}}{\text{:}}{{\text{m}}_{\text{2}}}} \right) = \left( {1:3} \right)$
$\left( {{x_{\text{1}}}{\text{,}}{{\text{y}}_1}} \right) = \left( {4,6} \right)$
$\left( {{x_2}{\text{,}}{{\text{y}}_2}} \right) = \left( {1,5} \right)$
Putting the values in the section formula we can write,
Coordinates of $D$$ = \left( {\dfrac{{1(1) + 3(4)}}{{1 + 3}},\dfrac{{1(5) + 3(6)}}{{1 + 3}}} \right)$
On some simplification we get,
$ = \left( {\dfrac{{1 + 12}}{4},\dfrac{{5 + 18}}{4}} \right)$
Let us add the numerator term we get,
$ = D\left( {\dfrac{{13}}{4},\dfrac{{23}}{4}} \right)$
Here the diagram for the vertices of the D and E as follows
Now, we have to find out the area of ∆ADE and ∆ABC, we will apply the formula of area of triangle of vertices, i.e., $\dfrac{1}{2}[{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})]$
First we find that the area of triangle \[\Delta {\text{ADE}}\]
Here the vertices of the \[\Delta {\text{ADE}}\],
$\left( {{x_{\text{1}}}{\text{,}}{{\text{y}}_1}} \right) = \left( {4,6} \right)$
$\left( {{x_2}{\text{,}}{{\text{y}}_2}} \right) = \left( {\dfrac{{13}}{4},\dfrac{{23}}{4}} \right)$
$\left( {{x_3}{\text{,}}{{\text{y}}_3}} \right) = \left( {\dfrac{{19}}{4},5} \right)$
Substitute the value in the formula for area of triangle, we get
$ = \dfrac{1}{2}\left[ {4\left( {\dfrac{{23}}{4} - \dfrac{{20}}{4}} \right) + \dfrac{{13}}{4}\left( {\dfrac{{20}}{4} - 6} \right) + \dfrac{{19}}{4}\left( {6 - \dfrac{{23}}{4}} \right)} \right]$
On some simplification we get,
$ = \dfrac{1}{2}\left[ {4\left( {\dfrac{3}{4}} \right) + \dfrac{{13}}{4}\left( {\dfrac{{20 - 24}}{4}} \right) + \dfrac{{19}}{4}\left( {\dfrac{{24 - 23}}{4}} \right)} \right]$
Let us subtract the terms we get,
$ = \dfrac{1}{2}\left[ {4\left( {\dfrac{3}{4}} \right) + \dfrac{{13}}{4}\left( { - \dfrac{4}{4}} \right) + \dfrac{{19}}{4}\left( {\dfrac{1}{4}} \right)} \right]$
On multiply the terms we get,
$ = \dfrac{1}{2}\left( {3 - \dfrac{{52}}{{16}} + \dfrac{{19}}{{16}}} \right)$
Taking the LCM of the above terms we get,
$ = \dfrac{1}{2}\left( {\dfrac{{48 - 52 + 19}}{{16}}} \right)$
On some simplification we get,
$ = \dfrac{{15}}{{32}}$
Also we have to find area of triangle \[\Delta {\text{ABC}}\]
Here the vertices are,
$\left( {{x_{\text{1}}}{\text{,}}{{\text{y}}_1}} \right) = \left( {4,6} \right)$
$\left( {{x_2}{\text{,}}{{\text{y}}_2}} \right) = \left( {1,5} \right)$
$\left( {{x_3}{\text{,}}{{\text{y}}_3}} \right) = \left( {7,2} \right)$
Substitute the value in the formula for area of triangle, we get
$ = \dfrac{1}{2}[4(5 - 2) + 1(2 - 6) + 7(6 - 5)]$
On some simplification we get,
$ = \dfrac{1}{2}[12 - 4 + 7]$
On adding the terms we get,
$ = \dfrac{{15}}{2}$
So, \[\dfrac{{{\text{Area of Triangle ADE}}}}{{{\text{Area of Triangle ABC}}}} = \dfrac{{\dfrac{{15}}{{32}}}}{{\dfrac{{15}}{2}}}\]
$ = \dfrac{{15}}{{32}}x\dfrac{2}{{15}}$
$\dfrac{{{\text{Area of Triangle ADE}}}}{{{\text{Area of Triangle ABC}}}} = \dfrac{1}{{16}}$
Also hence Area of $\Delta ADE$=$\dfrac{{15}}{{32}}$.
Note: In this type of problems you need to solve the equation at the very first when in the question it is mentioned that a line has intersected the sides of the triangle at the point D and E respectively.
It is to be noted that when any point divides the line internally then the formula which is applicable is $\left( {\dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}} \right)$, but if the point divides the line externally then the formula which is applicable is $\left( {\dfrac{{{m_1}{x_2} - {m_2}{x_1}}}{{{m_1} - {m_2}}},\dfrac{{{m_1}{y_2} - {m_2}{y_1}}}{{{m_1} - {m_2}}}} \right)$
The key point in these questions is to check whether the point is dividing the line internally or externally or it is the midpoint.
Complete step-by-step answer:
From the above equation we get-
$\dfrac{{AE}}{{AC}} = \dfrac{1}{4}$………..(i)
$\dfrac{{AD}}{{AB}} = \dfrac{1}{4}$………..(ii)
By solving equation (i) we get-
$4AE = AC$
From the diagram we can easily understood that $AC = AE + EC$
Now we can write, $4AE = AE + EC$
Taking RHS \[{\text{AE}}\]has LHS, we get
$4AE - AE = EC$
On subtracting we get,
$3AE = EC$
We can write the above step in fraction type,
$\dfrac{{AE}}{{EC}} = \dfrac{1}{3}$
So it is clear the point $E$ divides the line $AC$ in the ratio of $1:3$ internally.
Now, we have to find the coordinates of E, by using section formula,
That is $\left( {\dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}} \right)$
Here $\left( {{{\text{m}}_{\text{1}}}{\text{:}}{{\text{m}}_{\text{2}}}} \right) = \left( {1:3} \right)$
$\left( {{x_{\text{1}}}{\text{,}}{{\text{y}}_1}} \right) = \left( {4,6} \right)$
$\left( {{x_2}{\text{,}}{{\text{y}}_2}} \right) = \left( {7,2} \right)$
Coordinates of $E = \left( {\dfrac{{1(7) + (3)(4)}}{{1 + 3}},\dfrac{{1(2) + 3(6)}}{{1 + 3}}} \right)$
On some simplification we get,
$ = \left( {\dfrac{{7 + 12}}{4},\dfrac{{2 + 18}}{4}} \right)$
Let us add the numerator term we get,
$ = \left( {\dfrac{{19}}{4},\dfrac{{20}}{4}} \right)$
Divided the terms we get,
$ = {\text{E}}\left( {\dfrac{{19}}{4},5} \right)$
Also we have to find Coordinates of $D$by using the section formula,
Here $\left( {{{\text{m}}_{\text{1}}}{\text{:}}{{\text{m}}_{\text{2}}}} \right) = \left( {1:3} \right)$
$\left( {{x_{\text{1}}}{\text{,}}{{\text{y}}_1}} \right) = \left( {4,6} \right)$
$\left( {{x_2}{\text{,}}{{\text{y}}_2}} \right) = \left( {1,5} \right)$
Putting the values in the section formula we can write,
Coordinates of $D$$ = \left( {\dfrac{{1(1) + 3(4)}}{{1 + 3}},\dfrac{{1(5) + 3(6)}}{{1 + 3}}} \right)$
On some simplification we get,
$ = \left( {\dfrac{{1 + 12}}{4},\dfrac{{5 + 18}}{4}} \right)$
Let us add the numerator term we get,
$ = D\left( {\dfrac{{13}}{4},\dfrac{{23}}{4}} \right)$
Here the diagram for the vertices of the D and E as follows
Now, we have to find out the area of ∆ADE and ∆ABC, we will apply the formula of area of triangle of vertices, i.e., $\dfrac{1}{2}[{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})]$
First we find that the area of triangle \[\Delta {\text{ADE}}\]
Here the vertices of the \[\Delta {\text{ADE}}\],
$\left( {{x_{\text{1}}}{\text{,}}{{\text{y}}_1}} \right) = \left( {4,6} \right)$
$\left( {{x_2}{\text{,}}{{\text{y}}_2}} \right) = \left( {\dfrac{{13}}{4},\dfrac{{23}}{4}} \right)$
$\left( {{x_3}{\text{,}}{{\text{y}}_3}} \right) = \left( {\dfrac{{19}}{4},5} \right)$
Substitute the value in the formula for area of triangle, we get
$ = \dfrac{1}{2}\left[ {4\left( {\dfrac{{23}}{4} - \dfrac{{20}}{4}} \right) + \dfrac{{13}}{4}\left( {\dfrac{{20}}{4} - 6} \right) + \dfrac{{19}}{4}\left( {6 - \dfrac{{23}}{4}} \right)} \right]$
On some simplification we get,
$ = \dfrac{1}{2}\left[ {4\left( {\dfrac{3}{4}} \right) + \dfrac{{13}}{4}\left( {\dfrac{{20 - 24}}{4}} \right) + \dfrac{{19}}{4}\left( {\dfrac{{24 - 23}}{4}} \right)} \right]$
Let us subtract the terms we get,
$ = \dfrac{1}{2}\left[ {4\left( {\dfrac{3}{4}} \right) + \dfrac{{13}}{4}\left( { - \dfrac{4}{4}} \right) + \dfrac{{19}}{4}\left( {\dfrac{1}{4}} \right)} \right]$
On multiply the terms we get,
$ = \dfrac{1}{2}\left( {3 - \dfrac{{52}}{{16}} + \dfrac{{19}}{{16}}} \right)$
Taking the LCM of the above terms we get,
$ = \dfrac{1}{2}\left( {\dfrac{{48 - 52 + 19}}{{16}}} \right)$
On some simplification we get,
$ = \dfrac{{15}}{{32}}$
Also we have to find area of triangle \[\Delta {\text{ABC}}\]
Here the vertices are,
$\left( {{x_{\text{1}}}{\text{,}}{{\text{y}}_1}} \right) = \left( {4,6} \right)$
$\left( {{x_2}{\text{,}}{{\text{y}}_2}} \right) = \left( {1,5} \right)$
$\left( {{x_3}{\text{,}}{{\text{y}}_3}} \right) = \left( {7,2} \right)$
Substitute the value in the formula for area of triangle, we get
$ = \dfrac{1}{2}[4(5 - 2) + 1(2 - 6) + 7(6 - 5)]$
On some simplification we get,
$ = \dfrac{1}{2}[12 - 4 + 7]$
On adding the terms we get,
$ = \dfrac{{15}}{2}$
So, \[\dfrac{{{\text{Area of Triangle ADE}}}}{{{\text{Area of Triangle ABC}}}} = \dfrac{{\dfrac{{15}}{{32}}}}{{\dfrac{{15}}{2}}}\]
$ = \dfrac{{15}}{{32}}x\dfrac{2}{{15}}$
$\dfrac{{{\text{Area of Triangle ADE}}}}{{{\text{Area of Triangle ABC}}}} = \dfrac{1}{{16}}$
Also hence Area of $\Delta ADE$=$\dfrac{{15}}{{32}}$.
Note: In this type of problems you need to solve the equation at the very first when in the question it is mentioned that a line has intersected the sides of the triangle at the point D and E respectively.
It is to be noted that when any point divides the line internally then the formula which is applicable is $\left( {\dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}} \right)$, but if the point divides the line externally then the formula which is applicable is $\left( {\dfrac{{{m_1}{x_2} - {m_2}{x_1}}}{{{m_1} - {m_2}}},\dfrac{{{m_1}{y_2} - {m_2}{y_1}}}{{{m_1} - {m_2}}}} \right)$
The key point in these questions is to check whether the point is dividing the line internally or externally or it is the midpoint.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

