
The vector \[\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right)+\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right)+\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right)\] is equal to
(a) \[\overrightarrow{0}\]
(b) \[\overrightarrow{a}\]
(c) \[2\overrightarrow{a}\]
(d) None of these
Answer
584.1k+ views
Hint: First of all, assume, \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\]. Now use the formula for vector triple product that is \[\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right),\left( \overrightarrow{a}.\overrightarrow{c} \right)b-\left( \overrightarrow{a}.\overrightarrow{b} \right)c\] and also use \[\widehat{i}.\widehat{i}=\widehat{j}.\widehat{j}=\widehat{k}.\widehat{k}=1;\widehat{i}.\widehat{j}=\widehat{j}.\widehat{k}=\widehat{k}.\widehat{i}=0\] to find the value of the given expression. Also separate the given expression and then solve individually each pat to avoid any confusion.
Complete step-by-step solution -
In this question, we have to find the value of the vector
\[\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right)+\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right)+\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right)\]
First of all, let us consider the expression given in the question.
\[E=\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right)+\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right)+\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right)\]
Let us take the value of \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\].
Let us assume,
\[\begin{align}
& \overrightarrow{P}=\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right) \\
& \overrightarrow{Q}=\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right) \\
& \overrightarrow{R}=\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right) \\
\end{align}\]
So, we get the above expression as,
\[E=\overrightarrow{P}+\overrightarrow{Q}+\overrightarrow{R}....\left( i \right)\]
We know that according to the vector triple product,
\[\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}.\overrightarrow{b} \right)\overrightarrow{c}....\left( ii \right)\]
By using this, let us find the value of vectors P, Q, and R.
Let us find the value of vector P.
\[\overrightarrow{P}=\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right)\]
By substituting the value of \[\overrightarrow{a}=\widehat{i},\overrightarrow{b}=\overrightarrow{a},\overrightarrow{c}=\widehat{i}\]in equation (ii), we get,
\[\overrightarrow{P}=\left( \widehat{i}.\widehat{i} \right)\overrightarrow{a}-\left( \widehat{i}.\overrightarrow{a} \right)\widehat{i}\]
By substituting, \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], we get,
\[\overrightarrow{P}=\left( \widehat{i}.\widehat{i} \right)\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ \widehat{i}.\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right) \right]\widehat{i}\]
We know that,
\[\begin{align}
& \left( a\widehat{i}+b\widehat{j}+c\widehat{k} \right).\left( p\widehat{i}+q\widehat{j}+r\widehat{k} \right)=ap+bq+cr \\
& \widehat{i}.\widehat{i}=\widehat{j}.\widehat{j}=\widehat{k}.\widehat{k}=1 \\
& \widehat{i}.\widehat{j}=\widehat{j}.\widehat{k}=\widehat{k}.\widehat{i}=0 \\
\end{align}\]
By using these, we get,
\[\overrightarrow{P}=1\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ x+0+0 \right]\widehat{i}\]
\[\overrightarrow{P}=x\widehat{i}+y\widehat{j}+z\widehat{k}-x\widehat{i}\]
\[\overrightarrow{P}=y\widehat{j}+z\widehat{k}....\left( iii \right)\]
Now, let us find the value of vector Q.
\[\overrightarrow{Q}=\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right)\]
By substituting the value of \[\overrightarrow{a}=\widehat{j},\overrightarrow{b}=\overrightarrow{a},\overrightarrow{c}=\widehat{j}\]in equation (ii), we get,
\[\overrightarrow{Q}=\left( \widehat{j}.\widehat{j} \right)\overrightarrow{a}-\left( \widehat{j}.\overrightarrow{a} \right)\widehat{j}\]
By substituting, \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], we get,
\[\overrightarrow{Q}=\left( \widehat{j}.\widehat{j} \right)\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ \widehat{j}.\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right) \right]\widehat{j}\]
\[\overrightarrow{Q}=1\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ 0+y+0 \right]\widehat{j}\]
\[\overrightarrow{Q}=x\widehat{i}+y\widehat{j}+z\widehat{k}-y\widehat{j}\]
\[\overrightarrow{Q}=x\widehat{i}+z\widehat{k}....\left( iv \right)\]
Now, let us find the value of vector R.
\[\overrightarrow{R}=\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right)\]
By substituting the value of \[\overrightarrow{a}=\widehat{k},\overrightarrow{b}=\overrightarrow{a},\overrightarrow{c}=\widehat{k}\]in equation (ii), we get,
\[\overrightarrow{R}=\left( \widehat{k}.\widehat{k} \right)\overrightarrow{a}-\left( \widehat{k}.\overrightarrow{a} \right)\widehat{k}\]
By substituting, \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], we get,
\[\overrightarrow{R}=\left( \widehat{k}.\widehat{k} \right)\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ \widehat{k}.\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right) \right]\widehat{k}\]
\[\overrightarrow{R}=1\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ 0+0+z \right]\widehat{k}\]
\[\overrightarrow{R}=x\widehat{i}+y\widehat{j}+z\widehat{k}-z\widehat{k}\]
\[\overrightarrow{R}=x\widehat{i}+y\widehat{j}....\left( v \right)\]
Now, by substituting the values of vectors P, Q and R from equation (iii), (iv) and (v), we get,
\[E=y\widehat{j}+z\widehat{k}+x\widehat{i}+z\widehat{k}+x\widehat{i}+y\widehat{j}\]
\[E=2x\widehat{i}+2y\widehat{j}+2z\widehat{k}\]
\[E=2\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right)\]
By replacing \[x\widehat{i}+y\widehat{j}+z\widehat{k}=\overrightarrow{a}\], we get,
\[E=2\overrightarrow{a}\]
Hence, we get the value of the given expression as \[2\overrightarrow{a}\].
Hence, the option (c) is the right answer.
\[\]
Note: In these types of questions, whenever the value of a certain vector is not given, we should always consider it as a general vector that is \[x\widehat{i}+y\widehat{j}+z\widehat{k}\]. Also, note that the vector triple product of 3 vectors is not associative that is, \[\left( \overrightarrow{a}\times \overrightarrow{b} \right)\times \overrightarrow{c}\ne \overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)\] because
\[\begin{align}
& \left( \overrightarrow{a}\times \overrightarrow{b} \right)\times \overrightarrow{c}=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{b}.\overrightarrow{c} \right)\overrightarrow{a} \\
& \overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}.\overrightarrow{b} \right)\overrightarrow{c} \\
\end{align}\]
So, it is advisable to apply the formula carefully to avoid any mistakes.
Complete step-by-step solution -
In this question, we have to find the value of the vector
\[\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right)+\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right)+\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right)\]
First of all, let us consider the expression given in the question.
\[E=\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right)+\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right)+\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right)\]
Let us take the value of \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\].
Let us assume,
\[\begin{align}
& \overrightarrow{P}=\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right) \\
& \overrightarrow{Q}=\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right) \\
& \overrightarrow{R}=\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right) \\
\end{align}\]
So, we get the above expression as,
\[E=\overrightarrow{P}+\overrightarrow{Q}+\overrightarrow{R}....\left( i \right)\]
We know that according to the vector triple product,
\[\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}.\overrightarrow{b} \right)\overrightarrow{c}....\left( ii \right)\]
By using this, let us find the value of vectors P, Q, and R.
Let us find the value of vector P.
\[\overrightarrow{P}=\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right)\]
By substituting the value of \[\overrightarrow{a}=\widehat{i},\overrightarrow{b}=\overrightarrow{a},\overrightarrow{c}=\widehat{i}\]in equation (ii), we get,
\[\overrightarrow{P}=\left( \widehat{i}.\widehat{i} \right)\overrightarrow{a}-\left( \widehat{i}.\overrightarrow{a} \right)\widehat{i}\]
By substituting, \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], we get,
\[\overrightarrow{P}=\left( \widehat{i}.\widehat{i} \right)\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ \widehat{i}.\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right) \right]\widehat{i}\]
We know that,
\[\begin{align}
& \left( a\widehat{i}+b\widehat{j}+c\widehat{k} \right).\left( p\widehat{i}+q\widehat{j}+r\widehat{k} \right)=ap+bq+cr \\
& \widehat{i}.\widehat{i}=\widehat{j}.\widehat{j}=\widehat{k}.\widehat{k}=1 \\
& \widehat{i}.\widehat{j}=\widehat{j}.\widehat{k}=\widehat{k}.\widehat{i}=0 \\
\end{align}\]
By using these, we get,
\[\overrightarrow{P}=1\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ x+0+0 \right]\widehat{i}\]
\[\overrightarrow{P}=x\widehat{i}+y\widehat{j}+z\widehat{k}-x\widehat{i}\]
\[\overrightarrow{P}=y\widehat{j}+z\widehat{k}....\left( iii \right)\]
Now, let us find the value of vector Q.
\[\overrightarrow{Q}=\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right)\]
By substituting the value of \[\overrightarrow{a}=\widehat{j},\overrightarrow{b}=\overrightarrow{a},\overrightarrow{c}=\widehat{j}\]in equation (ii), we get,
\[\overrightarrow{Q}=\left( \widehat{j}.\widehat{j} \right)\overrightarrow{a}-\left( \widehat{j}.\overrightarrow{a} \right)\widehat{j}\]
By substituting, \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], we get,
\[\overrightarrow{Q}=\left( \widehat{j}.\widehat{j} \right)\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ \widehat{j}.\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right) \right]\widehat{j}\]
\[\overrightarrow{Q}=1\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ 0+y+0 \right]\widehat{j}\]
\[\overrightarrow{Q}=x\widehat{i}+y\widehat{j}+z\widehat{k}-y\widehat{j}\]
\[\overrightarrow{Q}=x\widehat{i}+z\widehat{k}....\left( iv \right)\]
Now, let us find the value of vector R.
\[\overrightarrow{R}=\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right)\]
By substituting the value of \[\overrightarrow{a}=\widehat{k},\overrightarrow{b}=\overrightarrow{a},\overrightarrow{c}=\widehat{k}\]in equation (ii), we get,
\[\overrightarrow{R}=\left( \widehat{k}.\widehat{k} \right)\overrightarrow{a}-\left( \widehat{k}.\overrightarrow{a} \right)\widehat{k}\]
By substituting, \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], we get,
\[\overrightarrow{R}=\left( \widehat{k}.\widehat{k} \right)\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ \widehat{k}.\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right) \right]\widehat{k}\]
\[\overrightarrow{R}=1\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ 0+0+z \right]\widehat{k}\]
\[\overrightarrow{R}=x\widehat{i}+y\widehat{j}+z\widehat{k}-z\widehat{k}\]
\[\overrightarrow{R}=x\widehat{i}+y\widehat{j}....\left( v \right)\]
Now, by substituting the values of vectors P, Q and R from equation (iii), (iv) and (v), we get,
\[E=y\widehat{j}+z\widehat{k}+x\widehat{i}+z\widehat{k}+x\widehat{i}+y\widehat{j}\]
\[E=2x\widehat{i}+2y\widehat{j}+2z\widehat{k}\]
\[E=2\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right)\]
By replacing \[x\widehat{i}+y\widehat{j}+z\widehat{k}=\overrightarrow{a}\], we get,
\[E=2\overrightarrow{a}\]
Hence, we get the value of the given expression as \[2\overrightarrow{a}\].
Hence, the option (c) is the right answer.
\[\]
Note: In these types of questions, whenever the value of a certain vector is not given, we should always consider it as a general vector that is \[x\widehat{i}+y\widehat{j}+z\widehat{k}\]. Also, note that the vector triple product of 3 vectors is not associative that is, \[\left( \overrightarrow{a}\times \overrightarrow{b} \right)\times \overrightarrow{c}\ne \overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)\] because
\[\begin{align}
& \left( \overrightarrow{a}\times \overrightarrow{b} \right)\times \overrightarrow{c}=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{b}.\overrightarrow{c} \right)\overrightarrow{a} \\
& \overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}.\overrightarrow{b} \right)\overrightarrow{c} \\
\end{align}\]
So, it is advisable to apply the formula carefully to avoid any mistakes.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

