
The vector \[\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right)+\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right)+\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right)\] is equal to
(a) \[\overrightarrow{0}\]
(b) \[\overrightarrow{a}\]
(c) \[2\overrightarrow{a}\]
(d) None of these
Answer
597.6k+ views
Hint: First of all, assume, \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\]. Now use the formula for vector triple product that is \[\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right),\left( \overrightarrow{a}.\overrightarrow{c} \right)b-\left( \overrightarrow{a}.\overrightarrow{b} \right)c\] and also use \[\widehat{i}.\widehat{i}=\widehat{j}.\widehat{j}=\widehat{k}.\widehat{k}=1;\widehat{i}.\widehat{j}=\widehat{j}.\widehat{k}=\widehat{k}.\widehat{i}=0\] to find the value of the given expression. Also separate the given expression and then solve individually each pat to avoid any confusion.
Complete step-by-step solution -
In this question, we have to find the value of the vector
\[\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right)+\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right)+\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right)\]
First of all, let us consider the expression given in the question.
\[E=\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right)+\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right)+\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right)\]
Let us take the value of \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\].
Let us assume,
\[\begin{align}
& \overrightarrow{P}=\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right) \\
& \overrightarrow{Q}=\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right) \\
& \overrightarrow{R}=\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right) \\
\end{align}\]
So, we get the above expression as,
\[E=\overrightarrow{P}+\overrightarrow{Q}+\overrightarrow{R}....\left( i \right)\]
We know that according to the vector triple product,
\[\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}.\overrightarrow{b} \right)\overrightarrow{c}....\left( ii \right)\]
By using this, let us find the value of vectors P, Q, and R.
Let us find the value of vector P.
\[\overrightarrow{P}=\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right)\]
By substituting the value of \[\overrightarrow{a}=\widehat{i},\overrightarrow{b}=\overrightarrow{a},\overrightarrow{c}=\widehat{i}\]in equation (ii), we get,
\[\overrightarrow{P}=\left( \widehat{i}.\widehat{i} \right)\overrightarrow{a}-\left( \widehat{i}.\overrightarrow{a} \right)\widehat{i}\]
By substituting, \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], we get,
\[\overrightarrow{P}=\left( \widehat{i}.\widehat{i} \right)\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ \widehat{i}.\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right) \right]\widehat{i}\]
We know that,
\[\begin{align}
& \left( a\widehat{i}+b\widehat{j}+c\widehat{k} \right).\left( p\widehat{i}+q\widehat{j}+r\widehat{k} \right)=ap+bq+cr \\
& \widehat{i}.\widehat{i}=\widehat{j}.\widehat{j}=\widehat{k}.\widehat{k}=1 \\
& \widehat{i}.\widehat{j}=\widehat{j}.\widehat{k}=\widehat{k}.\widehat{i}=0 \\
\end{align}\]
By using these, we get,
\[\overrightarrow{P}=1\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ x+0+0 \right]\widehat{i}\]
\[\overrightarrow{P}=x\widehat{i}+y\widehat{j}+z\widehat{k}-x\widehat{i}\]
\[\overrightarrow{P}=y\widehat{j}+z\widehat{k}....\left( iii \right)\]
Now, let us find the value of vector Q.
\[\overrightarrow{Q}=\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right)\]
By substituting the value of \[\overrightarrow{a}=\widehat{j},\overrightarrow{b}=\overrightarrow{a},\overrightarrow{c}=\widehat{j}\]in equation (ii), we get,
\[\overrightarrow{Q}=\left( \widehat{j}.\widehat{j} \right)\overrightarrow{a}-\left( \widehat{j}.\overrightarrow{a} \right)\widehat{j}\]
By substituting, \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], we get,
\[\overrightarrow{Q}=\left( \widehat{j}.\widehat{j} \right)\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ \widehat{j}.\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right) \right]\widehat{j}\]
\[\overrightarrow{Q}=1\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ 0+y+0 \right]\widehat{j}\]
\[\overrightarrow{Q}=x\widehat{i}+y\widehat{j}+z\widehat{k}-y\widehat{j}\]
\[\overrightarrow{Q}=x\widehat{i}+z\widehat{k}....\left( iv \right)\]
Now, let us find the value of vector R.
\[\overrightarrow{R}=\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right)\]
By substituting the value of \[\overrightarrow{a}=\widehat{k},\overrightarrow{b}=\overrightarrow{a},\overrightarrow{c}=\widehat{k}\]in equation (ii), we get,
\[\overrightarrow{R}=\left( \widehat{k}.\widehat{k} \right)\overrightarrow{a}-\left( \widehat{k}.\overrightarrow{a} \right)\widehat{k}\]
By substituting, \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], we get,
\[\overrightarrow{R}=\left( \widehat{k}.\widehat{k} \right)\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ \widehat{k}.\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right) \right]\widehat{k}\]
\[\overrightarrow{R}=1\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ 0+0+z \right]\widehat{k}\]
\[\overrightarrow{R}=x\widehat{i}+y\widehat{j}+z\widehat{k}-z\widehat{k}\]
\[\overrightarrow{R}=x\widehat{i}+y\widehat{j}....\left( v \right)\]
Now, by substituting the values of vectors P, Q and R from equation (iii), (iv) and (v), we get,
\[E=y\widehat{j}+z\widehat{k}+x\widehat{i}+z\widehat{k}+x\widehat{i}+y\widehat{j}\]
\[E=2x\widehat{i}+2y\widehat{j}+2z\widehat{k}\]
\[E=2\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right)\]
By replacing \[x\widehat{i}+y\widehat{j}+z\widehat{k}=\overrightarrow{a}\], we get,
\[E=2\overrightarrow{a}\]
Hence, we get the value of the given expression as \[2\overrightarrow{a}\].
Hence, the option (c) is the right answer.
\[\]
Note: In these types of questions, whenever the value of a certain vector is not given, we should always consider it as a general vector that is \[x\widehat{i}+y\widehat{j}+z\widehat{k}\]. Also, note that the vector triple product of 3 vectors is not associative that is, \[\left( \overrightarrow{a}\times \overrightarrow{b} \right)\times \overrightarrow{c}\ne \overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)\] because
\[\begin{align}
& \left( \overrightarrow{a}\times \overrightarrow{b} \right)\times \overrightarrow{c}=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{b}.\overrightarrow{c} \right)\overrightarrow{a} \\
& \overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}.\overrightarrow{b} \right)\overrightarrow{c} \\
\end{align}\]
So, it is advisable to apply the formula carefully to avoid any mistakes.
Complete step-by-step solution -
In this question, we have to find the value of the vector
\[\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right)+\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right)+\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right)\]
First of all, let us consider the expression given in the question.
\[E=\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right)+\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right)+\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right)\]
Let us take the value of \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\].
Let us assume,
\[\begin{align}
& \overrightarrow{P}=\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right) \\
& \overrightarrow{Q}=\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right) \\
& \overrightarrow{R}=\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right) \\
\end{align}\]
So, we get the above expression as,
\[E=\overrightarrow{P}+\overrightarrow{Q}+\overrightarrow{R}....\left( i \right)\]
We know that according to the vector triple product,
\[\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}.\overrightarrow{b} \right)\overrightarrow{c}....\left( ii \right)\]
By using this, let us find the value of vectors P, Q, and R.
Let us find the value of vector P.
\[\overrightarrow{P}=\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right)\]
By substituting the value of \[\overrightarrow{a}=\widehat{i},\overrightarrow{b}=\overrightarrow{a},\overrightarrow{c}=\widehat{i}\]in equation (ii), we get,
\[\overrightarrow{P}=\left( \widehat{i}.\widehat{i} \right)\overrightarrow{a}-\left( \widehat{i}.\overrightarrow{a} \right)\widehat{i}\]
By substituting, \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], we get,
\[\overrightarrow{P}=\left( \widehat{i}.\widehat{i} \right)\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ \widehat{i}.\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right) \right]\widehat{i}\]
We know that,
\[\begin{align}
& \left( a\widehat{i}+b\widehat{j}+c\widehat{k} \right).\left( p\widehat{i}+q\widehat{j}+r\widehat{k} \right)=ap+bq+cr \\
& \widehat{i}.\widehat{i}=\widehat{j}.\widehat{j}=\widehat{k}.\widehat{k}=1 \\
& \widehat{i}.\widehat{j}=\widehat{j}.\widehat{k}=\widehat{k}.\widehat{i}=0 \\
\end{align}\]
By using these, we get,
\[\overrightarrow{P}=1\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ x+0+0 \right]\widehat{i}\]
\[\overrightarrow{P}=x\widehat{i}+y\widehat{j}+z\widehat{k}-x\widehat{i}\]
\[\overrightarrow{P}=y\widehat{j}+z\widehat{k}....\left( iii \right)\]
Now, let us find the value of vector Q.
\[\overrightarrow{Q}=\widehat{j}\times \left( \overrightarrow{a}\times \widehat{j} \right)\]
By substituting the value of \[\overrightarrow{a}=\widehat{j},\overrightarrow{b}=\overrightarrow{a},\overrightarrow{c}=\widehat{j}\]in equation (ii), we get,
\[\overrightarrow{Q}=\left( \widehat{j}.\widehat{j} \right)\overrightarrow{a}-\left( \widehat{j}.\overrightarrow{a} \right)\widehat{j}\]
By substituting, \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], we get,
\[\overrightarrow{Q}=\left( \widehat{j}.\widehat{j} \right)\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ \widehat{j}.\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right) \right]\widehat{j}\]
\[\overrightarrow{Q}=1\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ 0+y+0 \right]\widehat{j}\]
\[\overrightarrow{Q}=x\widehat{i}+y\widehat{j}+z\widehat{k}-y\widehat{j}\]
\[\overrightarrow{Q}=x\widehat{i}+z\widehat{k}....\left( iv \right)\]
Now, let us find the value of vector R.
\[\overrightarrow{R}=\widehat{k}\times \left( \overrightarrow{a}\times \widehat{k} \right)\]
By substituting the value of \[\overrightarrow{a}=\widehat{k},\overrightarrow{b}=\overrightarrow{a},\overrightarrow{c}=\widehat{k}\]in equation (ii), we get,
\[\overrightarrow{R}=\left( \widehat{k}.\widehat{k} \right)\overrightarrow{a}-\left( \widehat{k}.\overrightarrow{a} \right)\widehat{k}\]
By substituting, \[\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}\], we get,
\[\overrightarrow{R}=\left( \widehat{k}.\widehat{k} \right)\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ \widehat{k}.\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right) \right]\widehat{k}\]
\[\overrightarrow{R}=1\left[ x\widehat{i}+y\widehat{j}+z\widehat{k} \right]-\left[ 0+0+z \right]\widehat{k}\]
\[\overrightarrow{R}=x\widehat{i}+y\widehat{j}+z\widehat{k}-z\widehat{k}\]
\[\overrightarrow{R}=x\widehat{i}+y\widehat{j}....\left( v \right)\]
Now, by substituting the values of vectors P, Q and R from equation (iii), (iv) and (v), we get,
\[E=y\widehat{j}+z\widehat{k}+x\widehat{i}+z\widehat{k}+x\widehat{i}+y\widehat{j}\]
\[E=2x\widehat{i}+2y\widehat{j}+2z\widehat{k}\]
\[E=2\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right)\]
By replacing \[x\widehat{i}+y\widehat{j}+z\widehat{k}=\overrightarrow{a}\], we get,
\[E=2\overrightarrow{a}\]
Hence, we get the value of the given expression as \[2\overrightarrow{a}\].
Hence, the option (c) is the right answer.
\[\]
Note: In these types of questions, whenever the value of a certain vector is not given, we should always consider it as a general vector that is \[x\widehat{i}+y\widehat{j}+z\widehat{k}\]. Also, note that the vector triple product of 3 vectors is not associative that is, \[\left( \overrightarrow{a}\times \overrightarrow{b} \right)\times \overrightarrow{c}\ne \overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)\] because
\[\begin{align}
& \left( \overrightarrow{a}\times \overrightarrow{b} \right)\times \overrightarrow{c}=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{b}.\overrightarrow{c} \right)\overrightarrow{a} \\
& \overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}.\overrightarrow{b} \right)\overrightarrow{c} \\
\end{align}\]
So, it is advisable to apply the formula carefully to avoid any mistakes.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Draw the diagram showing the germination of pollen class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the different structural and functional differences class 12 chemistry CBSE

Explain the process of emasculation and bagging of class 12 biology CBSE

What is Saheb looking for in the garbage dump Where class 12 english CBSE

