
The value of the integral $\int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}$ is
(A) $-\cos x+c$
(B) $\cos x+c$
(C) $-\cos x\times \text{sgn} \left( \sin x \right)+c$
(D) None of These
Answer
586.2k+ views
Hint: We solve this question by first solving the function inside the integral, $\sqrt{\left( {{\sin }^{2}}x \right)}$, using the formula, $\sqrt{{{x}^{2}}}=\left| x \right|$. Then we consider the integral and solve in the integral when $\sin x>0$ and $\sin x<0$ using the formula $\int{\sin xdx}=-\cos x+c$. Then we multiply and divide the obtained value with $\left| \sin x \right|$. Then we simplify it and use the function $\text{sgn} x=\dfrac{\left| x \right|}{x}$ and simplify it to get the result and then combine the both results in the both cases if they are the same.
Complete step by step answer:
We are given the integral $\int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}$.
First let us consider the function inside the integral, that is $\sqrt{\left( {{\sin }^{2}}x \right)}$.
Now let us consider the property of square roots.
$\sqrt{{{x}^{2}}}=\left\{ \begin{matrix}
x\ \ \ \ if\ x>0 \\
-x\ \ \ \ if\ x<0 \\
\end{matrix} \right.$
We can also write it as
$\sqrt{{{x}^{2}}}=\left| x \right|$
So, using the above property we can write our given function as,
$\sqrt{\left( {{\sin }^{2}}x \right)}=\left| \sin x \right|$
As we need to find the value of the integral $\int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}$, let us substitute the above value in the integral. Then we get,
$\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\int{\left| \sin x \right|dx}$
Now let us consider the cases when $\sin x>0$ and when $\sin x<0$. Then we can write it as,
$\begin{align}
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\{ \begin{matrix}
\int{\sin xdx}\ \ \ \ if\ \ \sin x>0 \\
\int{-\sin xdx}\ \ \ \ if\ \ \sin x<0 \\
\end{matrix} \right. \\
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\{ \begin{matrix}
\int{\sin xdx}\ \ \ \ if\ \ \sin x>0 \\
-\int{\sin xdx}\ \ \ \ if\ \ \sin x<0 \\
\end{matrix} \right. \\
\end{align}$
Now let us consider the formula for integration,
$\Rightarrow \int{\sin xdx}=-\cos x+c$
Using this formula, we can write our integral as,
$\begin{align}
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\{ \begin{matrix}
-\cos x+c\ \ \ \ if\ \ \sin x>0 \\
-\left( -\cos x+c \right)\ \ \ \ if\ \ \sin x<0 \\
\end{matrix} \right. \\
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\{ \begin{matrix}
-\cos x+c\ \ \ \ if\ \ \sin x>0 \\
\cos x+c\ \ \ \ if\ \ \sin x<0 \\
\end{matrix} \right. \\
\end{align}$
Here the sign of c is not changed because it is a constant so it can be positive or negative both so we can write it in the same way.
Now let us divide and multiply with $\left| \sin x \right|$. Then we get,
$\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\{ \begin{matrix}
-\cos x\times \dfrac{\left| \sin x \right|}{\left| \sin x \right|}+c\ \ \ \ if\ \ \sin x>0 \\
\cos x\times \dfrac{\left| \sin x \right|}{\left| \sin x \right|}+c\ \ \ \ if\ \ \sin x<0 \\
\end{matrix} \right.$
Now let us use the formula of $\left| \sin x \right|$ discussed above. Then we get,
$\begin{align}
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\{ \begin{matrix}
-\cos x\times \dfrac{\left| \sin x \right|}{\sin x}+c\ \ \ \ if\ \ \sin x>0 \\
\cos x\times \dfrac{\left| \sin x \right|}{-\sin x}+c\ \ \ \ if\ \ \sin x<0 \\
\end{matrix} \right. \\
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\{ \begin{matrix}
-\cos x\times \dfrac{\left| \sin x \right|}{\sin x}+c\ \ \ \ if\ \ \sin x>0 \\
-\cos x\times \dfrac{\left| \sin x \right|}{\sin x}+c\ \ \ \ if\ \ \sin x<0 \\
\end{matrix} \right. \\
\end{align}$
As both values are the same now in both the cases.
$\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=-\cos x\times \dfrac{\left| \sin x \right|}{\sin x}+c$
Now let us consider the formula,
$\text{sgn} x=\dfrac{\left| x \right|}{x}$
Using this we can write our value above as,
$\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=-\cos x\times \text{sgn} \left( \sin x \right)+c$
So, the correct answer is “Option C”.
Note: There is a possibility of one making a mistake by taking the function inside the integral as $\sqrt{\left( {{\sin }^{2}}x \right)}=\sin x$. Then the integral becomes,
$\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\int{\sin xdx}$
Now let us consider the formula,
$\int{\sin xdx}=-\cos x+c$
Using this formula, we get
$\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=-\cos x+c$
So, one might take the answer as Option A.
But here we need to remember that square root of a number is always positive and take the function as $\sqrt{\left( {{\sin }^{2}}x \right)}=\left| \sin x \right|$.
Complete step by step answer:
We are given the integral $\int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}$.
First let us consider the function inside the integral, that is $\sqrt{\left( {{\sin }^{2}}x \right)}$.
Now let us consider the property of square roots.
$\sqrt{{{x}^{2}}}=\left\{ \begin{matrix}
x\ \ \ \ if\ x>0 \\
-x\ \ \ \ if\ x<0 \\
\end{matrix} \right.$
We can also write it as
$\sqrt{{{x}^{2}}}=\left| x \right|$
So, using the above property we can write our given function as,
$\sqrt{\left( {{\sin }^{2}}x \right)}=\left| \sin x \right|$
As we need to find the value of the integral $\int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}$, let us substitute the above value in the integral. Then we get,
$\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\int{\left| \sin x \right|dx}$
Now let us consider the cases when $\sin x>0$ and when $\sin x<0$. Then we can write it as,
$\begin{align}
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\{ \begin{matrix}
\int{\sin xdx}\ \ \ \ if\ \ \sin x>0 \\
\int{-\sin xdx}\ \ \ \ if\ \ \sin x<0 \\
\end{matrix} \right. \\
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\{ \begin{matrix}
\int{\sin xdx}\ \ \ \ if\ \ \sin x>0 \\
-\int{\sin xdx}\ \ \ \ if\ \ \sin x<0 \\
\end{matrix} \right. \\
\end{align}$
Now let us consider the formula for integration,
$\Rightarrow \int{\sin xdx}=-\cos x+c$
Using this formula, we can write our integral as,
$\begin{align}
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\{ \begin{matrix}
-\cos x+c\ \ \ \ if\ \ \sin x>0 \\
-\left( -\cos x+c \right)\ \ \ \ if\ \ \sin x<0 \\
\end{matrix} \right. \\
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\{ \begin{matrix}
-\cos x+c\ \ \ \ if\ \ \sin x>0 \\
\cos x+c\ \ \ \ if\ \ \sin x<0 \\
\end{matrix} \right. \\
\end{align}$
Here the sign of c is not changed because it is a constant so it can be positive or negative both so we can write it in the same way.
Now let us divide and multiply with $\left| \sin x \right|$. Then we get,
$\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\{ \begin{matrix}
-\cos x\times \dfrac{\left| \sin x \right|}{\left| \sin x \right|}+c\ \ \ \ if\ \ \sin x>0 \\
\cos x\times \dfrac{\left| \sin x \right|}{\left| \sin x \right|}+c\ \ \ \ if\ \ \sin x<0 \\
\end{matrix} \right.$
Now let us use the formula of $\left| \sin x \right|$ discussed above. Then we get,
$\begin{align}
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\{ \begin{matrix}
-\cos x\times \dfrac{\left| \sin x \right|}{\sin x}+c\ \ \ \ if\ \ \sin x>0 \\
\cos x\times \dfrac{\left| \sin x \right|}{-\sin x}+c\ \ \ \ if\ \ \sin x<0 \\
\end{matrix} \right. \\
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\{ \begin{matrix}
-\cos x\times \dfrac{\left| \sin x \right|}{\sin x}+c\ \ \ \ if\ \ \sin x>0 \\
-\cos x\times \dfrac{\left| \sin x \right|}{\sin x}+c\ \ \ \ if\ \ \sin x<0 \\
\end{matrix} \right. \\
\end{align}$
As both values are the same now in both the cases.
$\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=-\cos x\times \dfrac{\left| \sin x \right|}{\sin x}+c$
Now let us consider the formula,
$\text{sgn} x=\dfrac{\left| x \right|}{x}$
Using this we can write our value above as,
$\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=-\cos x\times \text{sgn} \left( \sin x \right)+c$
So, the correct answer is “Option C”.
Note: There is a possibility of one making a mistake by taking the function inside the integral as $\sqrt{\left( {{\sin }^{2}}x \right)}=\sin x$. Then the integral becomes,
$\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\int{\sin xdx}$
Now let us consider the formula,
$\int{\sin xdx}=-\cos x+c$
Using this formula, we get
$\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=-\cos x+c$
So, one might take the answer as Option A.
But here we need to remember that square root of a number is always positive and take the function as $\sqrt{\left( {{\sin }^{2}}x \right)}=\left| \sin x \right|$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

