
The value of the integral $\int\limits_{-\dfrac{\pi }{3}}^{\dfrac{\pi }{3}}{\dfrac{x\sin x}{{{\cos }^{2}}x}dx}$ is
(a) $\left( \dfrac{\pi }{3}-\log \tan \dfrac{3\pi }{2} \right)$,
(b) $2\left( \dfrac{2\pi }{3}-\log \tan \dfrac{5\pi }{12} \right)$,
(c) $3\left( \dfrac{\pi }{2}-\log \tan \dfrac{\pi }{12} \right)$,
(d) none of these.
Answer
585.9k+ views
Hint: To solve the question given above, we will change the limit form \[\left( -\dfrac{\pi }{3}\ to\text{ }\dfrac{\pi }{3} \right)to\left( 0\text{ }to\ \dfrac{2\pi }{3} \right)\] with the help of the fact that the term after integration is function. Then we will change the term $\dfrac{\sin x}{{{\cos }^{2}}x}$ such that we can apply by parts to the integral and after applying by parts and solving the indefinite part, we will apply limit.
Complete step by step answer:
To start with, we will find whether the function is odd or even. For this, we will put (-x) in place of x. Let $f\left( x \right)=\dfrac{x\sin x}{{{\cos }^{2}}x}.$ Thus, $f\left( -x \right)$ will be:
$\begin{align}
& \Rightarrow f\left( -x \right)=\dfrac{\left( -x \right)\sin \left( -x \right)}{{{\cos }^{2}}x} \\
& \Rightarrow f\left( -x \right)=\dfrac{-x\sin \left( -x \right)}{{{\cos }^{2}}x} \\
\end{align}$
Now, we know that $\sin \left( -x \right)=-\sin x.$ Thus, we will get:
$\begin{align}
& \Rightarrow f\left( -x \right)=\dfrac{-x\left( -\sin x \right)}{{{\cos }^{2}}x} \\
& \Rightarrow f\left( -x \right)=\dfrac{x\sin x}{{{\cos }^{2}}} \\
& \Rightarrow f\left( -x \right)=f\left( x \right) \\
\end{align}$
Hence it is an even function.
Now, we know that, if a function g (x) is an even function and the integral given is of the form:$\int\limits_{-a}^{a}{g\left( x \right)dx}$ then, we will have:
$\int\limits_{-a}^{a}{g\left( x \right)dx}=2\int\limits_{-a}^{a}{g\left( x \right)dx}$.
Let I be the value of the integral given in the question. Thus, we have:
$\begin{align}
& I=\int\limits_{-\dfrac{\pi }{3}}^{\dfrac{\pi }{3}}{\dfrac{x\sin x}{{{\cos }^{2}}x}dx} \\
& \Rightarrow I=2\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{x\sin x}{{{\cos }^{2}}x}dx}.........\left( 1 \right) \\
\end{align}$
Now, we know that , $f\left( x \right)=\dfrac{x\sin x}{{{\cos }^{2}}x}.........\left( 2 \right)$.
We can also write this as:
$\begin{align}
& \Rightarrow f\left( x \right)=\dfrac{x\sin x}{\left( \cos x \right)\left( \cos x \right)} \\
& \Rightarrow f\left( x \right)=\left( \dfrac{x}{\cos x} \right)\left( \dfrac{\sin x}{\cos x} \right) \\
\end{align}$
Now, we know that: $\dfrac{1}{\cos x}=\sec x\text{ }and\text{ }\dfrac{\sin x}{\cos x}=\tan x$, we will put these values in the above equation thus, we get:
$\begin{align}
& \Rightarrow f\left( x \right)=\left( x\sec x \right)\left( \tan x \right) \\
& \Rightarrow f\left( x \right)=x\sec xtanx.........\left( 3 \right) \\
\end{align}$
From (2) and (3), we have:
$\dfrac{x\sin x}{{{\cos }^{2}}x}=x\sec x\tan x$.
Now, we will put the value of $\dfrac{x\sin x}{{{\cos }^{2}}x}$ in equation (1). Thus, we will get:
\[\Rightarrow I=2\int\limits_{0}^{\dfrac{\pi }{3}}{x\sec x\text{ }\tan x\ dx}\].
Now to solve this integration, we will use the method of by-parts. According to by-parts method, we have: $\int{\left( \operatorname{uv} \right)dx}=v\int{\operatorname{u}dx}-\int{\left( \dfrac{dv}{dx}\times \int{\operatorname{u}dx} \right)dx}$. We also know while performing an integration for definite integral, we substitute limits after normal integration to the integrand i.e., $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx}=\left[ f\left( x \right) \right]_{a}^{b}$.
In our case, we will take $u=x\ and\ v=\sec x\ \tan x.$ Thus, we will get:
$\begin{align}
& \Rightarrow I=2\int\limits_{0}^{\dfrac{\pi }{3}}{\left( x \right)\left( \sec x\tan x \right)dx} \\
& \Rightarrow I=2\left[ x\int{\sec x\tan xdx-\int{\dfrac{dx}{dx}\int{\sec x\tan x{{\left( dx \right)}^{2}}}}} \right]_{0}^{\dfrac{\pi }{3}} \\
& \Rightarrow I=2\left[ x\int{\sec x\tan xdx-\int{1\int{\sec x\tan x{{\left( dx \right)}^{2}}}}} \right]_{0}^{\dfrac{\pi }{3}}.........\left( 4 \right) \\
\end{align}$
Now, we know that differentiation of $\sec x$ is given by:
$\begin{align}
& \dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x \\
& \Rightarrow \sec x=\int{\sec x\tan xdx} \\
& \Rightarrow \int{\sec x\tan xdx}=\sec x+c.........\left( 5 \right) \\
\end{align}$
Now, we will put the value of $\int{\sec x\tan x}$ from (5) to (4). Thus, we will get:
$\Rightarrow I=2\left[ x\left( \sec x \right)-\int{\sec xdx} \right]_{0}^{\dfrac{\pi }{3}}..........\left( 6 \right)$.
Now, the integration of $\sec \theta $ is given by:
$\int{\sec \theta d\theta }=\log \left( \sec \theta +\tan \theta \right)+c$.
Thus, using the above formula in (6), we will get:
$\Rightarrow I=2\left[ x\sec x-\log \left( \sec x+\tan x \right) \right]_{0}^{\dfrac{\pi }{3}}$.
Now, we have to find the indefinite integral so we will apply the limits on this indefinite integral we calculated. The limit of any integral can be applied by:
$\int{A\left( x \right)}=\left[ B\left( x \right) \right]_{a}^{b}=B\left( b \right)-B\left( a \right)$.
Thus, we will have:
$\begin{align}
& \Rightarrow I=2\left[ \dfrac{\pi }{3}\sec \left( \dfrac{\pi }{3} \right)-\log \left( \sec \dfrac{\pi }{3}+\tan \dfrac{\pi }{3} \right)-\left( 0\sec 0-\log \left( \sec 0+\tan 0 \right) \right) \right] \\
& \Rightarrow I=2\left[ \dfrac{\pi }{3}\sec \left( \dfrac{\pi }{3} \right)-\log \left( \sec \dfrac{\pi }{3}+\tan \dfrac{\pi }{3} \right)-0\sec 0+\log \left( \sec 0+\tan 0 \right) \right] \\
\end{align}$
Now, we will put the values of $\sec \dfrac{\pi }{3},\tan \dfrac{\pi }{3},\sec 0,\tan 0$ is the above integral:
$\begin{align}
& \sec \dfrac{\pi }{3}=2 \\
& \tan \dfrac{\pi }{3}=\sqrt{3} \\
& \sec 0=1 \\
& \tan 0=0 \\
\end{align}$
So, we have:
$\begin{align}
& \Rightarrow I=2\left[ \dfrac{\pi \left( 2 \right)}{3}-\log \left( 2+\sqrt{3} \right)-0\left( 0 \right)+\log \left( 1+0 \right) \right] \\
& \Rightarrow I=2\left[ \dfrac{2\pi }{3}-\log \left( 2+\sqrt{3} \right)-0+0 \right] \\
& \Rightarrow I=2\left[ \dfrac{2\pi }{3}-\log \left( 2+\sqrt{3} \right) \right]...............\left( 7 \right) \\
\end{align}$
Now, we know that: $\tan \dfrac{5\pi }{12}=2+\sqrt{3}.........\left( 8 \right).$
Thus, we will put the value of $\left( 2+\sqrt{3} \right)$ in equation (7) from (8):
$\Rightarrow I=2\left[ \dfrac{2\pi }{3}-\log \tan \dfrac{5\pi }{12} \right]$.
So, the correct answer is “Option B”.
Note: The term given in the question after the integration sign is an even function. If the function had been an odd function then we could not have used the identity:
\[\int\limits_{-a}^{a}{g\left( x \right)dx}=2\int\limits_{0}^{a}{g\left( x \right)dx}\].
If the function \[g\left( x \right)\] is odd function, then we have:
\[\int\limits_{-a}^{a}{g\left( x \right)dx}=0\].
We can solve the question without using the concept of odd and even functions. We can simply solve the question and put the limit from $\left( -\dfrac{\pi }{3}to\dfrac{\pi }{3} \right).$
Complete step by step answer:
To start with, we will find whether the function is odd or even. For this, we will put (-x) in place of x. Let $f\left( x \right)=\dfrac{x\sin x}{{{\cos }^{2}}x}.$ Thus, $f\left( -x \right)$ will be:
$\begin{align}
& \Rightarrow f\left( -x \right)=\dfrac{\left( -x \right)\sin \left( -x \right)}{{{\cos }^{2}}x} \\
& \Rightarrow f\left( -x \right)=\dfrac{-x\sin \left( -x \right)}{{{\cos }^{2}}x} \\
\end{align}$
Now, we know that $\sin \left( -x \right)=-\sin x.$ Thus, we will get:
$\begin{align}
& \Rightarrow f\left( -x \right)=\dfrac{-x\left( -\sin x \right)}{{{\cos }^{2}}x} \\
& \Rightarrow f\left( -x \right)=\dfrac{x\sin x}{{{\cos }^{2}}} \\
& \Rightarrow f\left( -x \right)=f\left( x \right) \\
\end{align}$
Hence it is an even function.
Now, we know that, if a function g (x) is an even function and the integral given is of the form:$\int\limits_{-a}^{a}{g\left( x \right)dx}$ then, we will have:
$\int\limits_{-a}^{a}{g\left( x \right)dx}=2\int\limits_{-a}^{a}{g\left( x \right)dx}$.
Let I be the value of the integral given in the question. Thus, we have:
$\begin{align}
& I=\int\limits_{-\dfrac{\pi }{3}}^{\dfrac{\pi }{3}}{\dfrac{x\sin x}{{{\cos }^{2}}x}dx} \\
& \Rightarrow I=2\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{x\sin x}{{{\cos }^{2}}x}dx}.........\left( 1 \right) \\
\end{align}$
Now, we know that , $f\left( x \right)=\dfrac{x\sin x}{{{\cos }^{2}}x}.........\left( 2 \right)$.
We can also write this as:
$\begin{align}
& \Rightarrow f\left( x \right)=\dfrac{x\sin x}{\left( \cos x \right)\left( \cos x \right)} \\
& \Rightarrow f\left( x \right)=\left( \dfrac{x}{\cos x} \right)\left( \dfrac{\sin x}{\cos x} \right) \\
\end{align}$
Now, we know that: $\dfrac{1}{\cos x}=\sec x\text{ }and\text{ }\dfrac{\sin x}{\cos x}=\tan x$, we will put these values in the above equation thus, we get:
$\begin{align}
& \Rightarrow f\left( x \right)=\left( x\sec x \right)\left( \tan x \right) \\
& \Rightarrow f\left( x \right)=x\sec xtanx.........\left( 3 \right) \\
\end{align}$
From (2) and (3), we have:
$\dfrac{x\sin x}{{{\cos }^{2}}x}=x\sec x\tan x$.
Now, we will put the value of $\dfrac{x\sin x}{{{\cos }^{2}}x}$ in equation (1). Thus, we will get:
\[\Rightarrow I=2\int\limits_{0}^{\dfrac{\pi }{3}}{x\sec x\text{ }\tan x\ dx}\].
Now to solve this integration, we will use the method of by-parts. According to by-parts method, we have: $\int{\left( \operatorname{uv} \right)dx}=v\int{\operatorname{u}dx}-\int{\left( \dfrac{dv}{dx}\times \int{\operatorname{u}dx} \right)dx}$. We also know while performing an integration for definite integral, we substitute limits after normal integration to the integrand i.e., $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx}=\left[ f\left( x \right) \right]_{a}^{b}$.
In our case, we will take $u=x\ and\ v=\sec x\ \tan x.$ Thus, we will get:
$\begin{align}
& \Rightarrow I=2\int\limits_{0}^{\dfrac{\pi }{3}}{\left( x \right)\left( \sec x\tan x \right)dx} \\
& \Rightarrow I=2\left[ x\int{\sec x\tan xdx-\int{\dfrac{dx}{dx}\int{\sec x\tan x{{\left( dx \right)}^{2}}}}} \right]_{0}^{\dfrac{\pi }{3}} \\
& \Rightarrow I=2\left[ x\int{\sec x\tan xdx-\int{1\int{\sec x\tan x{{\left( dx \right)}^{2}}}}} \right]_{0}^{\dfrac{\pi }{3}}.........\left( 4 \right) \\
\end{align}$
Now, we know that differentiation of $\sec x$ is given by:
$\begin{align}
& \dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x \\
& \Rightarrow \sec x=\int{\sec x\tan xdx} \\
& \Rightarrow \int{\sec x\tan xdx}=\sec x+c.........\left( 5 \right) \\
\end{align}$
Now, we will put the value of $\int{\sec x\tan x}$ from (5) to (4). Thus, we will get:
$\Rightarrow I=2\left[ x\left( \sec x \right)-\int{\sec xdx} \right]_{0}^{\dfrac{\pi }{3}}..........\left( 6 \right)$.
Now, the integration of $\sec \theta $ is given by:
$\int{\sec \theta d\theta }=\log \left( \sec \theta +\tan \theta \right)+c$.
Thus, using the above formula in (6), we will get:
$\Rightarrow I=2\left[ x\sec x-\log \left( \sec x+\tan x \right) \right]_{0}^{\dfrac{\pi }{3}}$.
Now, we have to find the indefinite integral so we will apply the limits on this indefinite integral we calculated. The limit of any integral can be applied by:
$\int{A\left( x \right)}=\left[ B\left( x \right) \right]_{a}^{b}=B\left( b \right)-B\left( a \right)$.
Thus, we will have:
$\begin{align}
& \Rightarrow I=2\left[ \dfrac{\pi }{3}\sec \left( \dfrac{\pi }{3} \right)-\log \left( \sec \dfrac{\pi }{3}+\tan \dfrac{\pi }{3} \right)-\left( 0\sec 0-\log \left( \sec 0+\tan 0 \right) \right) \right] \\
& \Rightarrow I=2\left[ \dfrac{\pi }{3}\sec \left( \dfrac{\pi }{3} \right)-\log \left( \sec \dfrac{\pi }{3}+\tan \dfrac{\pi }{3} \right)-0\sec 0+\log \left( \sec 0+\tan 0 \right) \right] \\
\end{align}$
Now, we will put the values of $\sec \dfrac{\pi }{3},\tan \dfrac{\pi }{3},\sec 0,\tan 0$ is the above integral:
$\begin{align}
& \sec \dfrac{\pi }{3}=2 \\
& \tan \dfrac{\pi }{3}=\sqrt{3} \\
& \sec 0=1 \\
& \tan 0=0 \\
\end{align}$
So, we have:
$\begin{align}
& \Rightarrow I=2\left[ \dfrac{\pi \left( 2 \right)}{3}-\log \left( 2+\sqrt{3} \right)-0\left( 0 \right)+\log \left( 1+0 \right) \right] \\
& \Rightarrow I=2\left[ \dfrac{2\pi }{3}-\log \left( 2+\sqrt{3} \right)-0+0 \right] \\
& \Rightarrow I=2\left[ \dfrac{2\pi }{3}-\log \left( 2+\sqrt{3} \right) \right]...............\left( 7 \right) \\
\end{align}$
Now, we know that: $\tan \dfrac{5\pi }{12}=2+\sqrt{3}.........\left( 8 \right).$
Thus, we will put the value of $\left( 2+\sqrt{3} \right)$ in equation (7) from (8):
$\Rightarrow I=2\left[ \dfrac{2\pi }{3}-\log \tan \dfrac{5\pi }{12} \right]$.
So, the correct answer is “Option B”.
Note: The term given in the question after the integration sign is an even function. If the function had been an odd function then we could not have used the identity:
\[\int\limits_{-a}^{a}{g\left( x \right)dx}=2\int\limits_{0}^{a}{g\left( x \right)dx}\].
If the function \[g\left( x \right)\] is odd function, then we have:
\[\int\limits_{-a}^{a}{g\left( x \right)dx}=0\].
We can solve the question without using the concept of odd and even functions. We can simply solve the question and put the limit from $\left( -\dfrac{\pi }{3}to\dfrac{\pi }{3} \right).$
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

