
The value of the integral \[\int_{4}^{10}{\dfrac{\left[ {{x}^{2}} \right]}{\left[ {{x}^{2}}-28x+196 \right]+\left[ {{x}^{2}} \right]}dx}\], where \[\left[ x \right]\] denotes the greater integer less than or equal to x, is: -
(a) 7
(b) 6
(c) 3
(d) \[\dfrac{1}{3}\]
Answer
578.4k+ views
Hint: Assume the value of the integral as ‘I’. Write \[{{x}^{2}}-28x+196\] in the form of \[{{\left( x-a \right)}^{2}}\]. Assume this expression of I as equation (i). Now, apply the formula given as: - \[I=\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}\], where f (x) is the function inside the integral sign and ‘a’ and ‘b’ are the given lower and upper limits respectively. Assume this converted form as equation(ii). Add both the equations and cancel the like terms to finally evaluate the limit of integration.
Complete step-by-step answer:
We have to find the value of the integral, \[\int_{4}^{10}{\dfrac{\left[ {{x}^{2}} \right]}{\left[ {{x}^{2}}-28x+196 \right]+\left[ {{x}^{2}} \right]}dx}\].
Let us assume this value as I.
\[\Rightarrow I=\int_{4}^{10}{\dfrac{\left[ {{x}^{2}} \right]}{\left[ {{x}^{2}}-28x+196 \right]+\left[ {{x}^{2}} \right]}dx}\]
Now, \[\left( {{x}^{2}}-28x+196 \right)\] can be written as: -
\[\Rightarrow {{x}^{2}}-28x+196={{x}^{2}}-2\times 14\times x+{{14}^{2}}\]
The above expression is of the form, \[{{a}^{2}}-2ab+{{b}^{2}}\] whose whole square form is, \[{{\left( a-b \right)}^{2}}\].
\[\Rightarrow {{x}^{2}}-28x+196={{\left( x-14 \right)}^{2}}\]
Therefore, the expression of ‘I’ becomes,
\[\Rightarrow I=\int_{4}^{10}{\dfrac{\left[ {{x}^{2}} \right]}{\left[ {{\left( x-14 \right)}^{2}} \right]+\left[ {{x}^{2}} \right]}dx}\]
\[\Rightarrow I=\int_{4}^{10}{\dfrac{\left[ {{x}^{2}} \right]dx}{\left[ {{\left( 14-x \right)}^{2}} \right]+\left[ {{x}^{2}} \right]}}\] - (i)
We know that: - \[I=\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}\], where ‘a’ and ‘b’ are the lower and upper limit of the integral respectively. f (x) is the function inside the sign of integration.
\[\begin{align}
& \Rightarrow I=\int_{4}^{10}{\dfrac{\left[ {{x}^{2}} \right]}{\left[ {{\left( 14-x \right)}^{2}} \right]+\left[ {{x}^{2}} \right]}} \\
& \Rightarrow f\left( a+b-x \right)=f\left( 4+10-x \right) \\
& \Rightarrow f\left( a+b-x \right)=f\left( 14-x \right) \\
& \Rightarrow f\left( a+b-x \right)=\dfrac{\left[ {{\left( 14-x \right)}^{2}} \right]}{\left[ {{x}^{2}} \right]+\left[ {{\left( 14-x \right)}^{2}} \right]} \\
\end{align}\]
So, the value of I can also be written as: -
\[\Rightarrow I=\int_{4}^{10}{\dfrac{\left[ {{\left( 14-x \right)}^{2}} \right]dx}{\left[ {{x}^{2}} \right]+\left[ {{\left( 14-x \right)}^{2}} \right]}}\] - (ii)
Adding equations (i) and (ii), we get,
\[\Rightarrow 2I=\int_{4}^{10}{\dfrac{\left[ {{x}^{2}} \right]dx}{\left[ {{x}^{2}} \right]+\left[ {{\left( 14-x \right)}^{2}} \right]}}+\int_{4}^{10}{\dfrac{\left[ {{\left( 14-x \right)}^{2}} \right]dx}{\left[ {{x}^{2}} \right]+\left[ {{\left( 14-x \right)}^{2}} \right]}}\]
Taking L.C.M in the right hand side, we get,
\[\Rightarrow 2I=\int_{4}^{10}{\dfrac{\left[ {{x}^{2}} \right]+\left[ {{\left( 14-x \right)}^{2}} \right]}{\left[ {{x}^{2}} \right]+\left[ {{\left( 14-x \right)}^{2}} \right]}dx}\]
Cancelling the like terms, we get,
\[\begin{align}
& \Rightarrow 2I=\int_{4}^{10}{1dx} \\
& \Rightarrow 2I=\int_{4}^{10}{dx} \\
& \Rightarrow 2I=\left[ x \right]_{4}^{10} \\
\end{align}\]
\[\Rightarrow 2I=\left( 10-4 \right)\]
\[\begin{align}
& \Rightarrow 2I=6 \\
& \Rightarrow I=3 \\
\end{align}\]
So, the correct answer is “Option (c)”.
Note: One may note that the property used above to solve the question is one of the most important properties of definite integral that should be remembered. Without using the above property we would have barely been able to solve the question is such an easy manner. That is why we must remember each and every property of definite integral. Sometimes we need to apply more than one property.
Complete step-by-step answer:
We have to find the value of the integral, \[\int_{4}^{10}{\dfrac{\left[ {{x}^{2}} \right]}{\left[ {{x}^{2}}-28x+196 \right]+\left[ {{x}^{2}} \right]}dx}\].
Let us assume this value as I.
\[\Rightarrow I=\int_{4}^{10}{\dfrac{\left[ {{x}^{2}} \right]}{\left[ {{x}^{2}}-28x+196 \right]+\left[ {{x}^{2}} \right]}dx}\]
Now, \[\left( {{x}^{2}}-28x+196 \right)\] can be written as: -
\[\Rightarrow {{x}^{2}}-28x+196={{x}^{2}}-2\times 14\times x+{{14}^{2}}\]
The above expression is of the form, \[{{a}^{2}}-2ab+{{b}^{2}}\] whose whole square form is, \[{{\left( a-b \right)}^{2}}\].
\[\Rightarrow {{x}^{2}}-28x+196={{\left( x-14 \right)}^{2}}\]
Therefore, the expression of ‘I’ becomes,
\[\Rightarrow I=\int_{4}^{10}{\dfrac{\left[ {{x}^{2}} \right]}{\left[ {{\left( x-14 \right)}^{2}} \right]+\left[ {{x}^{2}} \right]}dx}\]
\[\Rightarrow I=\int_{4}^{10}{\dfrac{\left[ {{x}^{2}} \right]dx}{\left[ {{\left( 14-x \right)}^{2}} \right]+\left[ {{x}^{2}} \right]}}\] - (i)
We know that: - \[I=\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}\], where ‘a’ and ‘b’ are the lower and upper limit of the integral respectively. f (x) is the function inside the sign of integration.
\[\begin{align}
& \Rightarrow I=\int_{4}^{10}{\dfrac{\left[ {{x}^{2}} \right]}{\left[ {{\left( 14-x \right)}^{2}} \right]+\left[ {{x}^{2}} \right]}} \\
& \Rightarrow f\left( a+b-x \right)=f\left( 4+10-x \right) \\
& \Rightarrow f\left( a+b-x \right)=f\left( 14-x \right) \\
& \Rightarrow f\left( a+b-x \right)=\dfrac{\left[ {{\left( 14-x \right)}^{2}} \right]}{\left[ {{x}^{2}} \right]+\left[ {{\left( 14-x \right)}^{2}} \right]} \\
\end{align}\]
So, the value of I can also be written as: -
\[\Rightarrow I=\int_{4}^{10}{\dfrac{\left[ {{\left( 14-x \right)}^{2}} \right]dx}{\left[ {{x}^{2}} \right]+\left[ {{\left( 14-x \right)}^{2}} \right]}}\] - (ii)
Adding equations (i) and (ii), we get,
\[\Rightarrow 2I=\int_{4}^{10}{\dfrac{\left[ {{x}^{2}} \right]dx}{\left[ {{x}^{2}} \right]+\left[ {{\left( 14-x \right)}^{2}} \right]}}+\int_{4}^{10}{\dfrac{\left[ {{\left( 14-x \right)}^{2}} \right]dx}{\left[ {{x}^{2}} \right]+\left[ {{\left( 14-x \right)}^{2}} \right]}}\]
Taking L.C.M in the right hand side, we get,
\[\Rightarrow 2I=\int_{4}^{10}{\dfrac{\left[ {{x}^{2}} \right]+\left[ {{\left( 14-x \right)}^{2}} \right]}{\left[ {{x}^{2}} \right]+\left[ {{\left( 14-x \right)}^{2}} \right]}dx}\]
Cancelling the like terms, we get,
\[\begin{align}
& \Rightarrow 2I=\int_{4}^{10}{1dx} \\
& \Rightarrow 2I=\int_{4}^{10}{dx} \\
& \Rightarrow 2I=\left[ x \right]_{4}^{10} \\
\end{align}\]
\[\Rightarrow 2I=\left( 10-4 \right)\]
\[\begin{align}
& \Rightarrow 2I=6 \\
& \Rightarrow I=3 \\
\end{align}\]
So, the correct answer is “Option (c)”.
Note: One may note that the property used above to solve the question is one of the most important properties of definite integral that should be remembered. Without using the above property we would have barely been able to solve the question is such an easy manner. That is why we must remember each and every property of definite integral. Sometimes we need to apply more than one property.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

