
The value of the integral $\int {x\sin x{{\sec }^3}xdx} $ is equal to
$\left( a \right)\dfrac{1}{2}\left[ {{{\sec }^2}x - \tan x} \right] + c$
$\left( b \right)\dfrac{1}{2}\left[ {x{{\sec }^2}x - \tan x} \right] + c$
$\left( c \right)\dfrac{1}{2}\left[ {x{{\sec }^2}x + \tan x} \right] + c$
$\left( d \right)\dfrac{1}{2}\left[ {{{\sec }^2}x + \tan x} \right] + c$
Answer
597.6k+ views
Hint: In this particular type of question use the concept that, sec x = (1/cos x) and (sin x/cos x) = tan x so first simplify the integral according to this property than apply integration by parts formula i.e. $\int {{1^{st}}{{.2}^{nd}}dx} = {2^{nd}}\int {{1^{st}}dx} - \int {\left( {\left( {\dfrac{d}{{dx}}{2^{nd}}} \right)\int {{1^{st}}dx} } \right)dx} + C$ so use these concepts to reach the solution of the question.
Complete step by step answer:
Given integral is
$\int {x\sin x{{\sec }^3}xdx} $
Let,
I = $\int {x\sin x{{\sec }^3}xdx} $
This integral is also written as
$ \Rightarrow I = \int {x\sin x\sec x{{\sec }^2}xdx} $
Now as we know that sec x = (1/cos x), so use this property in the above equation we have,
$ \Rightarrow I = \int {x\dfrac{{\sin x}}{{\cos x}}{{\sec }^2}xdx} $
Now as we know that (sin x/cos x) = tan x, so use this property in the above equation we have,
$ \Rightarrow I = \int {x\tan x{{\sec }^2}xdx} $..................... (1)
Now let, tan x = t............... (2)
Now differentiate equation (2) w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}\tan x = \dfrac{{dt}}{{dx}}$
Now as we know that the differentiation of tan x is ${\sec ^2}x$ so we have,
$ \Rightarrow {\sec ^2}xdx = dt$................ (3)
Now from equation (1), $x = {\tan ^{ - 1}}t$................. (4)
Now substitute the value from equation (2), (3) and (4) in equation (1) we have,
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} \]
Now integrate the above equation by integration by parts we have,
As we know that the formula for integration by parts is given as,
$ \Rightarrow \int {{1^{st}}{{.2}^{nd}}dx} = {2^{nd}}\int {{1^{st}}dx} - \int {\left( {\left( {\dfrac{d}{{dx}}{2^{nd}}} \right)\int {{1^{st}}dx} } \right)dx} + C$, where C is some integration constant.
Noe in the above equation ${\tan ^{ - 1}}t$ is the ${1^{st}}$ function and t is the ${2^{nd}}$ function so we have,
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = {\tan ^{ - 1}}t\int {tdt} - \int {\left( {\left( {\dfrac{d}{{dx}}{{\tan }^{ - 1}}t} \right)\int {tdt} } \right)dt} + C\]
Now apply integration using, $\int {tdt = \dfrac{{{t^2}}}{2} + c{\text{ and }}\dfrac{d}{{dt}}{{\tan }^{ - 1}}t} = \dfrac{1}{{1 + {t^2}}}$ so we have,
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = \dfrac{{{t^2}}}{2}{\tan ^{ - 1}}t - \int {\left( {\left( {\dfrac{1}{{1 + {t^2}}}} \right)\dfrac{{{t^2}}}{2}} \right)dt} + C\]
Now add and subtract by 1 in the numerator of the above integral we have,
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = \dfrac{{{t^2}}}{2}{\tan ^{ - 1}}t - \dfrac{1}{2}\int {\left( {\left( {\dfrac{{{t^2} + 1 - 1}}{{1 + {t^2}}}} \right)} \right)dt} + C\]
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = \dfrac{{{t^2}}}{2}{\tan ^{ - 1}}t - \dfrac{1}{2}\int {\left( {\left( {1 - \dfrac{1}{{1 + {t^2}}}} \right)} \right)dt} + C\]
Now separate the second integral we have,
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = \dfrac{{{t^2}}}{2}{\tan ^{ - 1}}t - \dfrac{1}{2}\int {dt + \dfrac{1}{2}} \int {\dfrac{1}{{1 + {t^2}}}dt} + C\]
Now integrate using the property that, \[\int {dt = t + c{\text{ and }}} \int {\dfrac{1}{{1 + {t^2}}}dt = {{\tan }^{ - 1}}t + c} \] so we have,
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = \dfrac{{{t^2}}}{2}{\tan ^{ - 1}}t - \dfrac{t}{2} + \dfrac{1}{2}{\tan ^{ - 1}}t + C\]
Now from equation (2) and (4) we have,
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = \dfrac{1}{2}x{\tan ^2}x - \dfrac{1}{2}\tan x + \dfrac{1}{2}x + C\]
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = \dfrac{1}{2}x\left[ {1 + {{\tan }^2}x} \right] - \dfrac{1}{2}\tan x + C\]
\[ \Rightarrow I = \int {x\sin x{{\sec }^3}xdx} = \dfrac{1}{2}x\left[ {{{\sec }^2}x} \right] - \dfrac{1}{2}\tan x + C\], $\left[ {\because \left( {1 + {{\tan }^2}x} \right) = {{\sec }^2}x} \right]$
\[ \Rightarrow I = \int {x\sin x{{\sec }^3}xdx} = \dfrac{1}{2}\left( {x{{\sec }^2}x - \tan x} \right) + C\]
So this is the required value of the integral.
Hence option (b) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always remember basic integration and basic differentiation formula which is used in that question and which is all stated above so first simplify the integration and then integrate it by parts as above then apply these formulas and simplify as above we will get the required answer.
Complete step by step answer:
Given integral is
$\int {x\sin x{{\sec }^3}xdx} $
Let,
I = $\int {x\sin x{{\sec }^3}xdx} $
This integral is also written as
$ \Rightarrow I = \int {x\sin x\sec x{{\sec }^2}xdx} $
Now as we know that sec x = (1/cos x), so use this property in the above equation we have,
$ \Rightarrow I = \int {x\dfrac{{\sin x}}{{\cos x}}{{\sec }^2}xdx} $
Now as we know that (sin x/cos x) = tan x, so use this property in the above equation we have,
$ \Rightarrow I = \int {x\tan x{{\sec }^2}xdx} $..................... (1)
Now let, tan x = t............... (2)
Now differentiate equation (2) w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}\tan x = \dfrac{{dt}}{{dx}}$
Now as we know that the differentiation of tan x is ${\sec ^2}x$ so we have,
$ \Rightarrow {\sec ^2}xdx = dt$................ (3)
Now from equation (1), $x = {\tan ^{ - 1}}t$................. (4)
Now substitute the value from equation (2), (3) and (4) in equation (1) we have,
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} \]
Now integrate the above equation by integration by parts we have,
As we know that the formula for integration by parts is given as,
$ \Rightarrow \int {{1^{st}}{{.2}^{nd}}dx} = {2^{nd}}\int {{1^{st}}dx} - \int {\left( {\left( {\dfrac{d}{{dx}}{2^{nd}}} \right)\int {{1^{st}}dx} } \right)dx} + C$, where C is some integration constant.
Noe in the above equation ${\tan ^{ - 1}}t$ is the ${1^{st}}$ function and t is the ${2^{nd}}$ function so we have,
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = {\tan ^{ - 1}}t\int {tdt} - \int {\left( {\left( {\dfrac{d}{{dx}}{{\tan }^{ - 1}}t} \right)\int {tdt} } \right)dt} + C\]
Now apply integration using, $\int {tdt = \dfrac{{{t^2}}}{2} + c{\text{ and }}\dfrac{d}{{dt}}{{\tan }^{ - 1}}t} = \dfrac{1}{{1 + {t^2}}}$ so we have,
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = \dfrac{{{t^2}}}{2}{\tan ^{ - 1}}t - \int {\left( {\left( {\dfrac{1}{{1 + {t^2}}}} \right)\dfrac{{{t^2}}}{2}} \right)dt} + C\]
Now add and subtract by 1 in the numerator of the above integral we have,
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = \dfrac{{{t^2}}}{2}{\tan ^{ - 1}}t - \dfrac{1}{2}\int {\left( {\left( {\dfrac{{{t^2} + 1 - 1}}{{1 + {t^2}}}} \right)} \right)dt} + C\]
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = \dfrac{{{t^2}}}{2}{\tan ^{ - 1}}t - \dfrac{1}{2}\int {\left( {\left( {1 - \dfrac{1}{{1 + {t^2}}}} \right)} \right)dt} + C\]
Now separate the second integral we have,
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = \dfrac{{{t^2}}}{2}{\tan ^{ - 1}}t - \dfrac{1}{2}\int {dt + \dfrac{1}{2}} \int {\dfrac{1}{{1 + {t^2}}}dt} + C\]
Now integrate using the property that, \[\int {dt = t + c{\text{ and }}} \int {\dfrac{1}{{1 + {t^2}}}dt = {{\tan }^{ - 1}}t + c} \] so we have,
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = \dfrac{{{t^2}}}{2}{\tan ^{ - 1}}t - \dfrac{t}{2} + \dfrac{1}{2}{\tan ^{ - 1}}t + C\]
Now from equation (2) and (4) we have,
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = \dfrac{1}{2}x{\tan ^2}x - \dfrac{1}{2}\tan x + \dfrac{1}{2}x + C\]
\[ \Rightarrow I = \int {t{{\tan }^{ - 1}}tdt} = \dfrac{1}{2}x\left[ {1 + {{\tan }^2}x} \right] - \dfrac{1}{2}\tan x + C\]
\[ \Rightarrow I = \int {x\sin x{{\sec }^3}xdx} = \dfrac{1}{2}x\left[ {{{\sec }^2}x} \right] - \dfrac{1}{2}\tan x + C\], $\left[ {\because \left( {1 + {{\tan }^2}x} \right) = {{\sec }^2}x} \right]$
\[ \Rightarrow I = \int {x\sin x{{\sec }^3}xdx} = \dfrac{1}{2}\left( {x{{\sec }^2}x - \tan x} \right) + C\]
So this is the required value of the integral.
Hence option (b) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always remember basic integration and basic differentiation formula which is used in that question and which is all stated above so first simplify the integration and then integrate it by parts as above then apply these formulas and simplify as above we will get the required answer.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

How many states of matter are there in total class 12 chemistry CBSE

