
The value of the integral $ \int {\left[ {\dfrac{{1 + {x^4}}}{{{{\left( {1 - {x^4}} \right)}^{\dfrac{3}{2}}}}}} \right]dx} = $
1) $ \dfrac{x}{{\sqrt {1 - {x^4}} }} + C $
2) $ \dfrac{{ - x}}{{\sqrt {1 - {x^4}} }} + C $
3) $ \dfrac{{2x}}{{\sqrt {1 - {x^4}} }} + C $
4) $ \dfrac{{ - 2x}}{{\sqrt {1 - {x^4}} }} + C $
Answer
502.8k+ views
Hint: We will first have to operate the given function accordingly to change it to a form such that we can easily integrate it. Then we would have to assume a suitable function as a variable such as $ t $ , and change the function accordingly and perform suitable operations to find the integration to find the result. Then finally we would replace the original variable to get the answer back in the terms of the original variable.
Complete step-by-step answer:
Given, $ \int {\left[ {\dfrac{{1 + {x^4}}}{{{{\left( {1 - {x^4}} \right)}^{\dfrac{3}{2}}}}}} \right]dx} $
Let $ I = \int {\left[ {\dfrac{{1 + {x^4}}}{{{{\left( {1 - {x^4}} \right)}^{\dfrac{3}{2}}}}}} \right]dx} $
Now, dividing both numerator and denominator by $ {x^3} $ , we get,
$ \Rightarrow I = \int {\left[ {\dfrac{{\dfrac{{1 + {x^4}}}{{{x^3}}}}}{{\dfrac{{{{\left( {1 - {x^4}} \right)}^{\dfrac{3}{2}}}}}{{{x^3}}}}}} \right]dx} $
Therefore, further simplifying, we get,
$ \Rightarrow I = \int {\left[ {\dfrac{{\dfrac{1}{{{x^3}}} + x}}{{{{\left( {\dfrac{1}{{{x^2}}} - {x^2}} \right)}^{\dfrac{3}{2}}}}}} \right]dx} $
Now, let us assume, $ \dfrac{1}{{{x^2}}} - {x^2} = t $
Now, differentiating both sides, we get,
$ \Rightarrow \left( {\dfrac{{ - 2}}{{{x^3}}} - 2x} \right)dx = dt $
Taking $ - 2 $ common from the left hand side, we get,
$ \Rightarrow - 2\left( {\dfrac{1}{{{x^3}}} + x} \right)dx = dt $
Now, dividing both sides by $ - 2 $ , we get,
$ \Rightarrow \left( {\dfrac{1}{{{x^3}}} + x} \right)dx = \dfrac{{ - 1}}{2}dt $
Now, substituting these values in $ I $ , we get,
$ \Rightarrow I = \int {\left[ {\dfrac{1}{{{t^{\dfrac{3}{2}}}}}} \right]\left( {\dfrac{{ - 1}}{2}} \right)dt} $
$ \Rightarrow I = - \dfrac{1}{2}\int {\dfrac{{dt}}{{{t^{\dfrac{3}{2}}}}}} $
Now, we know, the power rule of integration $ \int {{x^n}dx} = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right] + C $ .
Using this formula in $ I $ , we get,
$ \Rightarrow I = - \dfrac{1}{2}\int {{t^{\dfrac{{ - 3}}{2}}}} dt $
$ \Rightarrow I = - \dfrac{1}{2}\left[ {\dfrac{{{t^{\dfrac{{ - 3}}{2} + 1}}}}{{\dfrac{{ - 3}}{2} + 1}}} \right] + C $
Where, $ C $ is the constant of integration.
Further simplifying, we get,
$ \Rightarrow I = - \dfrac{1}{2}\left[ {\dfrac{{{t^{\dfrac{{ - 1}}{2}}}}}{{\dfrac{{ - 1}}{2}}}} \right] + C $
Doing the calculations, we get,
$ \Rightarrow I = {t^{\dfrac{{ - 1}}{2}}} + C $
Now, replacing back $ t $ in terms of $ x $ , we get,
$ \Rightarrow I = {\left( {\dfrac{1}{{{x^2}}} - {x^2}} \right)^{\dfrac{{ - 1}}{2}}} + C $
Taking LCM of the expression, we get,
$ \Rightarrow I = {\left( {\dfrac{{1 - {x^4}}}{{{x^2}}}} \right)^{\dfrac{{ - 1}}{2}}} + C $
We can write it as,
$ \Rightarrow I = {\left( {\dfrac{{{x^2}}}{{1 - {x^4}}}} \right)^{\dfrac{1}{2}}} + C $
Now, taking square root, we get,
$ \Rightarrow I = \left( {\dfrac{x}{{\sqrt {1 - {x^4}} }}} \right) + C $
Therefore, the required answer we found is $ \int {\left[ {\dfrac{{1 + {x^4}}}{{{{\left( {1 - {x^4}} \right)}^{\dfrac{3}{2}}}}}} \right]dx} = \left( {\dfrac{x}{{\sqrt {1 - {x^4}} }}} \right) + C $
Hence, the correct option is 1.
So, the correct answer is “Option 1”.
Note: The part where we make mistakes the most is in assuming the function in the form of another variable to substitute in the original question. A simpler way to keep in mind what to do is that, we have to convert the numerator and denominator in such a way that the derivative of the denominator is the denominator or vice-versa. There are further many cases, which can be kept in grasp by practice.
Complete step-by-step answer:
Given, $ \int {\left[ {\dfrac{{1 + {x^4}}}{{{{\left( {1 - {x^4}} \right)}^{\dfrac{3}{2}}}}}} \right]dx} $
Let $ I = \int {\left[ {\dfrac{{1 + {x^4}}}{{{{\left( {1 - {x^4}} \right)}^{\dfrac{3}{2}}}}}} \right]dx} $
Now, dividing both numerator and denominator by $ {x^3} $ , we get,
$ \Rightarrow I = \int {\left[ {\dfrac{{\dfrac{{1 + {x^4}}}{{{x^3}}}}}{{\dfrac{{{{\left( {1 - {x^4}} \right)}^{\dfrac{3}{2}}}}}{{{x^3}}}}}} \right]dx} $
Therefore, further simplifying, we get,
$ \Rightarrow I = \int {\left[ {\dfrac{{\dfrac{1}{{{x^3}}} + x}}{{{{\left( {\dfrac{1}{{{x^2}}} - {x^2}} \right)}^{\dfrac{3}{2}}}}}} \right]dx} $
Now, let us assume, $ \dfrac{1}{{{x^2}}} - {x^2} = t $
Now, differentiating both sides, we get,
$ \Rightarrow \left( {\dfrac{{ - 2}}{{{x^3}}} - 2x} \right)dx = dt $
Taking $ - 2 $ common from the left hand side, we get,
$ \Rightarrow - 2\left( {\dfrac{1}{{{x^3}}} + x} \right)dx = dt $
Now, dividing both sides by $ - 2 $ , we get,
$ \Rightarrow \left( {\dfrac{1}{{{x^3}}} + x} \right)dx = \dfrac{{ - 1}}{2}dt $
Now, substituting these values in $ I $ , we get,
$ \Rightarrow I = \int {\left[ {\dfrac{1}{{{t^{\dfrac{3}{2}}}}}} \right]\left( {\dfrac{{ - 1}}{2}} \right)dt} $
$ \Rightarrow I = - \dfrac{1}{2}\int {\dfrac{{dt}}{{{t^{\dfrac{3}{2}}}}}} $
Now, we know, the power rule of integration $ \int {{x^n}dx} = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right] + C $ .
Using this formula in $ I $ , we get,
$ \Rightarrow I = - \dfrac{1}{2}\int {{t^{\dfrac{{ - 3}}{2}}}} dt $
$ \Rightarrow I = - \dfrac{1}{2}\left[ {\dfrac{{{t^{\dfrac{{ - 3}}{2} + 1}}}}{{\dfrac{{ - 3}}{2} + 1}}} \right] + C $
Where, $ C $ is the constant of integration.
Further simplifying, we get,
$ \Rightarrow I = - \dfrac{1}{2}\left[ {\dfrac{{{t^{\dfrac{{ - 1}}{2}}}}}{{\dfrac{{ - 1}}{2}}}} \right] + C $
Doing the calculations, we get,
$ \Rightarrow I = {t^{\dfrac{{ - 1}}{2}}} + C $
Now, replacing back $ t $ in terms of $ x $ , we get,
$ \Rightarrow I = {\left( {\dfrac{1}{{{x^2}}} - {x^2}} \right)^{\dfrac{{ - 1}}{2}}} + C $
Taking LCM of the expression, we get,
$ \Rightarrow I = {\left( {\dfrac{{1 - {x^4}}}{{{x^2}}}} \right)^{\dfrac{{ - 1}}{2}}} + C $
We can write it as,
$ \Rightarrow I = {\left( {\dfrac{{{x^2}}}{{1 - {x^4}}}} \right)^{\dfrac{1}{2}}} + C $
Now, taking square root, we get,
$ \Rightarrow I = \left( {\dfrac{x}{{\sqrt {1 - {x^4}} }}} \right) + C $
Therefore, the required answer we found is $ \int {\left[ {\dfrac{{1 + {x^4}}}{{{{\left( {1 - {x^4}} \right)}^{\dfrac{3}{2}}}}}} \right]dx} = \left( {\dfrac{x}{{\sqrt {1 - {x^4}} }}} \right) + C $
Hence, the correct option is 1.
So, the correct answer is “Option 1”.
Note: The part where we make mistakes the most is in assuming the function in the form of another variable to substitute in the original question. A simpler way to keep in mind what to do is that, we have to convert the numerator and denominator in such a way that the derivative of the denominator is the denominator or vice-versa. There are further many cases, which can be kept in grasp by practice.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

