
The value of the given integral $\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{x^3}}}\int_0^x {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt} $ is
$\left( a \right)0$
$\left( b \right)\dfrac{1}{{12}}$
$\left( c \right)\dfrac{1}{{24}}$
$\left( d \right)\dfrac{1}{{64}}$
Answer
506.4k+ views
Hint: In this particular question use the concept that if the limit is in the form of $\dfrac{0}{0}$ then we use L’ hospitals’ rule i.e. differentiate the numerator and denominator separately so use these concepts to reach the solution of the question.
Complete step-by-step solution:
Given limit
$\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{x^3}}}\int_0^x {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt} $
Let, $L = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{x^3}}}\int_0^x {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt} $
$ \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\int_0^x {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt} }}{{{x^3}}}$
Now when we substitute x = 0 in the limit we get $\dfrac{{\int_0^0 {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt} }}{{{0^3}}} = \dfrac{0}{0}$ so it is called as indeterminate form so we use L’ hospitals’ rule i.e. differentiate the numerator as well as the denominator we get,
$ \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{d}{{dx}}\int_0^x {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt} }}{{\dfrac{d}{{dx}}{x^3}}}$
Now as we know that according to Leibniz integral rule, $\dfrac{d}{{dx}}\left( {\int\limits_a^b {g\left( x \right)dx} } \right) = {\left( {g\left( x \right)} \right)_{x = b}} - {\left( {g\left( x \right)} \right)_{x = a}}$ so according to this property differentiate the above equation and we also know that $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ we have,
\[ \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}} \right)}_{t = x}} - {{\left( {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}} \right)}_{t = 0}}}}{{3{x^2}}}\]
\[ \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\dfrac{{x\ln \left( {1 + x} \right)}}{{{x^4} + 4}}} \right) - \left( {\dfrac{{0\ln \left( {1 + 0} \right)}}{{{0^4} + 4}}} \right)}}{{3{x^2}}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\dfrac{{x\ln \left( {1 + x} \right)}}{{{x^4} + 4}}} \right)}}{{3{x^2}}}\]
\[ \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\ln \left( {1 + x} \right)}}{{3x\left( {{x^4} + 4} \right)}}\]
Now the above limit is also written as
\[ \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\ln \left( {1 + x} \right)}}{x}}}{{3\left( {{x^4} + 4} \right)}}\]
Now as we all know that $\mathop {\lim }\limits_{x \to 0} \dfrac{{\ln \left( {1 + x} \right)}}{x} = 1$ so use this property we have,
\[ \Rightarrow L = \dfrac{{\mathop {\lim }\limits_{x \to 0} \dfrac{{\ln \left( {1 + x} \right)}}{x}}}{{\mathop {\lim }\limits_{x \to 0} 3\left( {{x^4} + 4} \right)}} = \dfrac{1}{{3\left( {0 + 4} \right)}} = \dfrac{1}{{12}}\]
So this is the required value of the limit.
Hence option (b) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember the Leibniz integral rule, the differentiation of definite integral is given as $\dfrac{d}{{dx}}\left( {\int\limits_a^b {g\left( x \right)dx} } \right) = {\left( {g\left( x \right)} \right)_{x = b}} - {\left( {g\left( x \right)} \right)_{x = a}}$, and always recall the basic limit property that $\mathop {\lim }\limits_{x \to 0} \dfrac{{\ln \left( {1 + x} \right)}}{x} = 1$, so first differentiate then use the basic limit property and then simplify we will get the required value of the limit.
Complete step-by-step solution:
Given limit
$\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{x^3}}}\int_0^x {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt} $
Let, $L = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{x^3}}}\int_0^x {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt} $
$ \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\int_0^x {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt} }}{{{x^3}}}$
Now when we substitute x = 0 in the limit we get $\dfrac{{\int_0^0 {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt} }}{{{0^3}}} = \dfrac{0}{0}$ so it is called as indeterminate form so we use L’ hospitals’ rule i.e. differentiate the numerator as well as the denominator we get,
$ \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{d}{{dx}}\int_0^x {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt} }}{{\dfrac{d}{{dx}}{x^3}}}$
Now as we know that according to Leibniz integral rule, $\dfrac{d}{{dx}}\left( {\int\limits_a^b {g\left( x \right)dx} } \right) = {\left( {g\left( x \right)} \right)_{x = b}} - {\left( {g\left( x \right)} \right)_{x = a}}$ so according to this property differentiate the above equation and we also know that $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ we have,
\[ \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}} \right)}_{t = x}} - {{\left( {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}} \right)}_{t = 0}}}}{{3{x^2}}}\]
\[ \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\dfrac{{x\ln \left( {1 + x} \right)}}{{{x^4} + 4}}} \right) - \left( {\dfrac{{0\ln \left( {1 + 0} \right)}}{{{0^4} + 4}}} \right)}}{{3{x^2}}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\dfrac{{x\ln \left( {1 + x} \right)}}{{{x^4} + 4}}} \right)}}{{3{x^2}}}\]
\[ \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\ln \left( {1 + x} \right)}}{{3x\left( {{x^4} + 4} \right)}}\]
Now the above limit is also written as
\[ \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\ln \left( {1 + x} \right)}}{x}}}{{3\left( {{x^4} + 4} \right)}}\]
Now as we all know that $\mathop {\lim }\limits_{x \to 0} \dfrac{{\ln \left( {1 + x} \right)}}{x} = 1$ so use this property we have,
\[ \Rightarrow L = \dfrac{{\mathop {\lim }\limits_{x \to 0} \dfrac{{\ln \left( {1 + x} \right)}}{x}}}{{\mathop {\lim }\limits_{x \to 0} 3\left( {{x^4} + 4} \right)}} = \dfrac{1}{{3\left( {0 + 4} \right)}} = \dfrac{1}{{12}}\]
So this is the required value of the limit.
Hence option (b) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember the Leibniz integral rule, the differentiation of definite integral is given as $\dfrac{d}{{dx}}\left( {\int\limits_a^b {g\left( x \right)dx} } \right) = {\left( {g\left( x \right)} \right)_{x = b}} - {\left( {g\left( x \right)} \right)_{x = a}}$, and always recall the basic limit property that $\mathop {\lim }\limits_{x \to 0} \dfrac{{\ln \left( {1 + x} \right)}}{x} = 1$, so first differentiate then use the basic limit property and then simplify we will get the required value of the limit.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
