
The value of the expression \[1 \times (2 - w) \times (2 - {w^2}) + 2 \times (3 - w) \times (3 - {w^2}) + ............. + (n - 1) \times (n - w) \times (n - {w^2})\],where w is an imaginary cube root of unity, is …………….
A) \[\dfrac{1}{2}n\left[ {n + 1} \right]\left[ {{n^2} + 3n + 2} \right]\]
B) \[\dfrac{1}{4}n\left[ {n - 1} \right]\left[ {{n^2} + 3n + 4} \right]\]
C) \[\dfrac{1}{4}n\left[ {n - 1} \right]\left[ {{n^2} + 3n + 2} \right]\]
D) \[\dfrac{1}{2}n\left[ {n - 1} \right]\left[ {{n^2} + 3n + 4} \right]\]
Answer
508.8k+ views
Hint: First analyze the repeating terms then use the property of the cube root of unity .After utilizing these formulae arrange in required format. Always remember the basic formulae of series for getting results rapidly .
Formula used: \[\ {
1 + w + {w^2} = 0 \\
w + {w^2} = - 1 \\
{w^3} = 1 \\
\sum\limits_{i = 1}^n {{n^3}} = {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4} \\
}\ \]
Complete step-by-step answer:
Given expression is \[1 \times (2 - w) \times (2 - {w^2}) + 2 \times (3 - w) \times (3 - {w^2}) + ............. + (n - 1) \times (n - w) \times (n - {w^2})\]
In this expression nth term can be written as \[{T_n}\]
\[{T_n} = (n - 1)(n - w)(n - {w^2})\]
The sum of all the term can be written as of following
\[S = \sum\limits_{i = 1}^n {(n - 1)(n - w)(n - {w^2})} \]
Now multiplying the terms we get
\[S = \]\[\sum\limits_{i = 1}^n {(n - 1)({n^2} - n{w^2}} - nw + {w^3})\]
\[S = \]\[\sum\limits_{i = 1}^n {(n - 1)({n^2} - n(w + {w^2}) + {w^3})} \] using the property of cube root of unity \[\ {
w + {w^2} = - 1 \\
{w^3} = 1 \\
\ } \]
\[S = \]\[\sum\limits_{i = 1}^n {(n - 1)({n^2} + n + 1)} \]
\[S = \]\[\sum\limits_{i = 1}^n {({n^3} + {n^2} + n} - {n^2} - n - 1)\]
further simplifying
\[S = \]\[\sum\limits_{i = 1}^n {({n^3} - 1)} \]=\[\sum\limits_{i = 1}^n {{n^3}} + \sum\limits_{i = 1}^n {( - 1)} \]=\[{\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2} - n\]
\[S = \]\[\dfrac{{{n^2}({n^2} + 2n + 1) - 4n}}{4} = \dfrac{1}{4}n({n^3} + 2{n^2} + n - 4)\]=\[\dfrac{1}{4}n(n - 1)({n^2} + 3n + 4)\]
The solution obtained here is
\[S = \]\[\dfrac{1}{4}n(n - 1)({n^2} + 3n + 4)\]
Hence option (B) is the right answer.
Note: For solving the problem based on series remember the basic formulae of series
\[\sum\limits_{i = 1}^n {n = \dfrac{{n(n - 1)}}{2}} \] (sum of the first n natural numbers)
\[\sum\limits_{i = 1}^n {{n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}} \] (sum of the squares of the first n natural numbers)
\[\sum\limits_{i = 1}^n {{n^3}} = {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4} = {\left( {\sum\limits_{i = 1}^n n } \right)^2}\](sum of the cubes of first n natural numbers)
\[\sum\limits_{i = 1}^n {{n^4}} = \dfrac{n}{{30}}(n + 1)(2n + 1)(3{n^2} + 3n - 1)\] (sum of the fourth power of first n natural numbers)
Formula used: \[\ {
1 + w + {w^2} = 0 \\
w + {w^2} = - 1 \\
{w^3} = 1 \\
\sum\limits_{i = 1}^n {{n^3}} = {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4} \\
}\ \]
Complete step-by-step answer:
Given expression is \[1 \times (2 - w) \times (2 - {w^2}) + 2 \times (3 - w) \times (3 - {w^2}) + ............. + (n - 1) \times (n - w) \times (n - {w^2})\]
In this expression nth term can be written as \[{T_n}\]
\[{T_n} = (n - 1)(n - w)(n - {w^2})\]
The sum of all the term can be written as of following
\[S = \sum\limits_{i = 1}^n {(n - 1)(n - w)(n - {w^2})} \]
Now multiplying the terms we get
\[S = \]\[\sum\limits_{i = 1}^n {(n - 1)({n^2} - n{w^2}} - nw + {w^3})\]
\[S = \]\[\sum\limits_{i = 1}^n {(n - 1)({n^2} - n(w + {w^2}) + {w^3})} \] using the property of cube root of unity \[\ {
w + {w^2} = - 1 \\
{w^3} = 1 \\
\ } \]
\[S = \]\[\sum\limits_{i = 1}^n {(n - 1)({n^2} + n + 1)} \]
\[S = \]\[\sum\limits_{i = 1}^n {({n^3} + {n^2} + n} - {n^2} - n - 1)\]
further simplifying
\[S = \]\[\sum\limits_{i = 1}^n {({n^3} - 1)} \]=\[\sum\limits_{i = 1}^n {{n^3}} + \sum\limits_{i = 1}^n {( - 1)} \]=\[{\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2} - n\]
\[S = \]\[\dfrac{{{n^2}({n^2} + 2n + 1) - 4n}}{4} = \dfrac{1}{4}n({n^3} + 2{n^2} + n - 4)\]=\[\dfrac{1}{4}n(n - 1)({n^2} + 3n + 4)\]
The solution obtained here is
\[S = \]\[\dfrac{1}{4}n(n - 1)({n^2} + 3n + 4)\]
Hence option (B) is the right answer.
Note: For solving the problem based on series remember the basic formulae of series
\[\sum\limits_{i = 1}^n {n = \dfrac{{n(n - 1)}}{2}} \] (sum of the first n natural numbers)
\[\sum\limits_{i = 1}^n {{n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}} \] (sum of the squares of the first n natural numbers)
\[\sum\limits_{i = 1}^n {{n^3}} = {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4} = {\left( {\sum\limits_{i = 1}^n n } \right)^2}\](sum of the cubes of first n natural numbers)
\[\sum\limits_{i = 1}^n {{n^4}} = \dfrac{n}{{30}}(n + 1)(2n + 1)(3{n^2} + 3n - 1)\] (sum of the fourth power of first n natural numbers)
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
