
The value of the expression \[1 \times (2 - w) \times (2 - {w^2}) + 2 \times (3 - w) \times (3 - {w^2}) + ............. + (n - 1) \times (n - w) \times (n - {w^2})\],where w is an imaginary cube root of unity, is …………….
A) \[\dfrac{1}{2}n\left[ {n + 1} \right]\left[ {{n^2} + 3n + 2} \right]\]
B) \[\dfrac{1}{4}n\left[ {n - 1} \right]\left[ {{n^2} + 3n + 4} \right]\]
C) \[\dfrac{1}{4}n\left[ {n - 1} \right]\left[ {{n^2} + 3n + 2} \right]\]
D) \[\dfrac{1}{2}n\left[ {n - 1} \right]\left[ {{n^2} + 3n + 4} \right]\]
Answer
589.5k+ views
Hint: First analyze the repeating terms then use the property of the cube root of unity .After utilizing these formulae arrange in required format. Always remember the basic formulae of series for getting results rapidly .
Formula used: \[\ {
1 + w + {w^2} = 0 \\
w + {w^2} = - 1 \\
{w^3} = 1 \\
\sum\limits_{i = 1}^n {{n^3}} = {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4} \\
}\ \]
Complete step-by-step answer:
Given expression is \[1 \times (2 - w) \times (2 - {w^2}) + 2 \times (3 - w) \times (3 - {w^2}) + ............. + (n - 1) \times (n - w) \times (n - {w^2})\]
In this expression nth term can be written as \[{T_n}\]
\[{T_n} = (n - 1)(n - w)(n - {w^2})\]
The sum of all the term can be written as of following
\[S = \sum\limits_{i = 1}^n {(n - 1)(n - w)(n - {w^2})} \]
Now multiplying the terms we get
\[S = \]\[\sum\limits_{i = 1}^n {(n - 1)({n^2} - n{w^2}} - nw + {w^3})\]
\[S = \]\[\sum\limits_{i = 1}^n {(n - 1)({n^2} - n(w + {w^2}) + {w^3})} \] using the property of cube root of unity \[\ {
w + {w^2} = - 1 \\
{w^3} = 1 \\
\ } \]
\[S = \]\[\sum\limits_{i = 1}^n {(n - 1)({n^2} + n + 1)} \]
\[S = \]\[\sum\limits_{i = 1}^n {({n^3} + {n^2} + n} - {n^2} - n - 1)\]
further simplifying
\[S = \]\[\sum\limits_{i = 1}^n {({n^3} - 1)} \]=\[\sum\limits_{i = 1}^n {{n^3}} + \sum\limits_{i = 1}^n {( - 1)} \]=\[{\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2} - n\]
\[S = \]\[\dfrac{{{n^2}({n^2} + 2n + 1) - 4n}}{4} = \dfrac{1}{4}n({n^3} + 2{n^2} + n - 4)\]=\[\dfrac{1}{4}n(n - 1)({n^2} + 3n + 4)\]
The solution obtained here is
\[S = \]\[\dfrac{1}{4}n(n - 1)({n^2} + 3n + 4)\]
Hence option (B) is the right answer.
Note: For solving the problem based on series remember the basic formulae of series
\[\sum\limits_{i = 1}^n {n = \dfrac{{n(n - 1)}}{2}} \] (sum of the first n natural numbers)
\[\sum\limits_{i = 1}^n {{n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}} \] (sum of the squares of the first n natural numbers)
\[\sum\limits_{i = 1}^n {{n^3}} = {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4} = {\left( {\sum\limits_{i = 1}^n n } \right)^2}\](sum of the cubes of first n natural numbers)
\[\sum\limits_{i = 1}^n {{n^4}} = \dfrac{n}{{30}}(n + 1)(2n + 1)(3{n^2} + 3n - 1)\] (sum of the fourth power of first n natural numbers)
Formula used: \[\ {
1 + w + {w^2} = 0 \\
w + {w^2} = - 1 \\
{w^3} = 1 \\
\sum\limits_{i = 1}^n {{n^3}} = {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4} \\
}\ \]
Complete step-by-step answer:
Given expression is \[1 \times (2 - w) \times (2 - {w^2}) + 2 \times (3 - w) \times (3 - {w^2}) + ............. + (n - 1) \times (n - w) \times (n - {w^2})\]
In this expression nth term can be written as \[{T_n}\]
\[{T_n} = (n - 1)(n - w)(n - {w^2})\]
The sum of all the term can be written as of following
\[S = \sum\limits_{i = 1}^n {(n - 1)(n - w)(n - {w^2})} \]
Now multiplying the terms we get
\[S = \]\[\sum\limits_{i = 1}^n {(n - 1)({n^2} - n{w^2}} - nw + {w^3})\]
\[S = \]\[\sum\limits_{i = 1}^n {(n - 1)({n^2} - n(w + {w^2}) + {w^3})} \] using the property of cube root of unity \[\ {
w + {w^2} = - 1 \\
{w^3} = 1 \\
\ } \]
\[S = \]\[\sum\limits_{i = 1}^n {(n - 1)({n^2} + n + 1)} \]
\[S = \]\[\sum\limits_{i = 1}^n {({n^3} + {n^2} + n} - {n^2} - n - 1)\]
further simplifying
\[S = \]\[\sum\limits_{i = 1}^n {({n^3} - 1)} \]=\[\sum\limits_{i = 1}^n {{n^3}} + \sum\limits_{i = 1}^n {( - 1)} \]=\[{\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2} - n\]
\[S = \]\[\dfrac{{{n^2}({n^2} + 2n + 1) - 4n}}{4} = \dfrac{1}{4}n({n^3} + 2{n^2} + n - 4)\]=\[\dfrac{1}{4}n(n - 1)({n^2} + 3n + 4)\]
The solution obtained here is
\[S = \]\[\dfrac{1}{4}n(n - 1)({n^2} + 3n + 4)\]
Hence option (B) is the right answer.
Note: For solving the problem based on series remember the basic formulae of series
\[\sum\limits_{i = 1}^n {n = \dfrac{{n(n - 1)}}{2}} \] (sum of the first n natural numbers)
\[\sum\limits_{i = 1}^n {{n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}} \] (sum of the squares of the first n natural numbers)
\[\sum\limits_{i = 1}^n {{n^3}} = {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4} = {\left( {\sum\limits_{i = 1}^n n } \right)^2}\](sum of the cubes of first n natural numbers)
\[\sum\limits_{i = 1}^n {{n^4}} = \dfrac{n}{{30}}(n + 1)(2n + 1)(3{n^2} + 3n - 1)\] (sum of the fourth power of first n natural numbers)
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

