
The value of the expression
\[1 \cdot (2 - \omega )(2 - {\omega ^2}) + {\text{ }}2 \cdot (3 - \omega )(3 - {\omega ^2}) + \ldots \ldots \ldots \ldots .. + {\text{ }}\left( {n - 1} \right)(n - \omega )(n - {\omega ^2})\], where $\omega $ is an imaginary cube root of unity, is
(A). $\dfrac{1}{2}(n - 1)n({n^2} + 3n + 4)$
(B). $\dfrac{1}{4}(n - 1)n({n^2} + 3n + 4)$
(C). $\dfrac{1}{2}(n + 1)n({n^2} + 3n + 4)$
(D). $\dfrac{1}{4}(n + 1)n({n^2} + 3n + 4)$
Answer
572.1k+ views
Hint: Simplify the relation of the sequence and use the identities of cube root of unity . Then form the general term representing the sequence and use the general term in order to find out the sum of the required sequence.
Complete step-by-step answer:
Given
\[1 \cdot (2 - \omega )(2 - {\omega ^2}) + {\text{ }}2 \cdot (3 - \omega )(3 - {\omega ^2}) + \ldots \ldots \ldots \ldots .. + {\text{ }}\left( {n - 1} \right)(n - \omega )(n - {\omega ^2})\]
Let us start by opening the brackets and obtain a homogeneous equation. We get
$
1 \cdot (4 - 2\omega - 2{\omega ^2} + {\omega ^3}) + {\text{ }}2 \cdot (9 - 3\omega - 3{\omega ^2} + {\omega ^3}) + \ldots \ldots \ldots \ldots .. + {\text{till }}\left( {n - 1} \right)terms \\
1 \cdot [4 - 2(\omega + {\omega ^2}) + {\omega ^3}] + {\text{ }}2 \cdot [9 - 3(\omega + {\omega ^2}) + {\omega ^3}] + \ldots \ldots \ldots \ldots .. + {\text{till }}\left( {n - 1} \right)terms \\
\\
$
Now , We know that
$
\omega + {\omega ^2} = - 1{\text{ and }}{\omega ^3} = 1.{\text{ Substituting these values ,we get}} \\
1 \cdot [4 - 2( - 1) + 1] + {\text{ }}2 \cdot [9 - 3( - 1) + 1] + \ldots \ldots \ldots \ldots .. + {\text{till }}\left( {n - 1} \right)terms \\
\Rightarrow 1 \cdot [4 + 2 + 1] + {\text{ }}2 \cdot [9 + 3 + 1] + \ldots \ldots \ldots \ldots .. + {\text{till }}\left( {n - 1} \right)terms \\
\Rightarrow 1 \cdot [7] + 2 \cdot [13] + ............ + {\text{ till }}\left( {n - 1} \right)terms \\
$
Let us try to find out the general term of the sequence.
\[1 \cdot [7] + 2 \cdot [13] + 3 \cdot [21]............ + {\text{ till }}\left( {n - 1} \right)terms\]
By observing the sequence we find that first part of the sequence is 1,2,3,4 …… till (n-1) terms, It’s general term is ‘x’ and the second part of the sequence in 7,13,21,….. till (n-1) terms , So we will try to find it’s general term.
$
S = 7 + 13 + 21 + ................... + {r_x} \to eqn(a) \\
S = 0 + 7 + 13 + 21 + .............. + {r_{x - 1}} + {r_x} \to eqn(b) \\
$
Subtracting equation b from equation a , by following the rule of subtracting first term from second and so on….
$
0 = 7 + 6 + 8 + ................ + ({r_x} - {r_{x - 1}}) - {r_x} \\
{r_x} = 7 + [6 + 8 + 10........ + ({r_x} - {r_{x - 1}})] \\
$
If we observe here 6,8,10 form an A.P. with common difference(d) = 2 and number of terms = (x-1). Applying the sum of first n natural number i.e.$ = \dfrac{n}{2}[2a + (n - 1)d]$
$
{r_x} = 7 + \{ \dfrac{{(x - 1)}}{2}[2 \times 6 + (x - 2) \times 2]\} \\
\Rightarrow {r_x} = 7 + \left\{ {\dfrac{{(x - 1)}}{2}[12 + 2x - 4]} \right\} \\
\Rightarrow {r_x} = 7 + \left\{ {\dfrac{{(x - 1)}}{2}[8 + 2x]} \right\} \\
\Rightarrow {r_x} = 7 + (x - 1)(4 + x) \\
\Rightarrow {r_x} = 7 + 4x + {x^2} - 4 - x \\
\Rightarrow {r_x} = 3 + 3x + {x^2} \\
$
By splitting the middle term we get
$
{r_x} = {x^2} + 2x + x + 2 + 1 \\
{r_x} = (x + 2)(x + 1) + 1 \\
$
So the final general term formed by the first and second sequence together will be as follows
\[{{\text{T}}_x} = x[(x + 1)(x + 2) + 1]{\text{ for }}x{\text{ = 1 to}}(n - 1)\]
This can also be written as
\[ \Rightarrow {\text{ }}{{\text{T}}_x} = {x^3}{\text{ + 3}}{{\text{x}}^2}{\text{ + 3x for }}x{\text{ = 1 to}}(n - 1)\]
Now ,we know the sum of sequence can be derived from general term as
$
{S_x} = \sum\limits_1^{n - 1} {{T_x}} \\
\therefore S = \sum {{x^3}} + 3 \cdot \sum {{x^2}} + 3 \cdot \sum x {\text{ for }}x = 1{\text{ to (n - 1)}} \\
$
We know
$
\sum {{x^3}} = {\text{ [}}\dfrac{{n(n + 1)}}{2}{]^2},\sum {{x^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6},\sum x = \dfrac{{n(n + 1)}}{2} \\
{\text{Here }}n{\text{ }} = {\text{ }}n{\text{ }} - 1 \\
\Rightarrow {[\dfrac{{n(n - 1)}}{2}]^2} + 3[\dfrac{{n(n - 1)(2n - 1)}}{6}] + 3[\dfrac{{n(n - 1)}}{2}] \\
\\
$
On Simplifying this , we get
\[ \Rightarrow \dfrac{1}{4}n(n - 1)({n^2} + 3n + 4)\]
Therefore , Option B is the correct option.
Note: All the identities of the cube root of unity and formulas for the sum of first natural numbers , their squares and cubes must be known for solving such similar questions. Attention must be given while substituting the values and also while forming the general term.
Complete step-by-step answer:
Given
\[1 \cdot (2 - \omega )(2 - {\omega ^2}) + {\text{ }}2 \cdot (3 - \omega )(3 - {\omega ^2}) + \ldots \ldots \ldots \ldots .. + {\text{ }}\left( {n - 1} \right)(n - \omega )(n - {\omega ^2})\]
Let us start by opening the brackets and obtain a homogeneous equation. We get
$
1 \cdot (4 - 2\omega - 2{\omega ^2} + {\omega ^3}) + {\text{ }}2 \cdot (9 - 3\omega - 3{\omega ^2} + {\omega ^3}) + \ldots \ldots \ldots \ldots .. + {\text{till }}\left( {n - 1} \right)terms \\
1 \cdot [4 - 2(\omega + {\omega ^2}) + {\omega ^3}] + {\text{ }}2 \cdot [9 - 3(\omega + {\omega ^2}) + {\omega ^3}] + \ldots \ldots \ldots \ldots .. + {\text{till }}\left( {n - 1} \right)terms \\
\\
$
Now , We know that
$
\omega + {\omega ^2} = - 1{\text{ and }}{\omega ^3} = 1.{\text{ Substituting these values ,we get}} \\
1 \cdot [4 - 2( - 1) + 1] + {\text{ }}2 \cdot [9 - 3( - 1) + 1] + \ldots \ldots \ldots \ldots .. + {\text{till }}\left( {n - 1} \right)terms \\
\Rightarrow 1 \cdot [4 + 2 + 1] + {\text{ }}2 \cdot [9 + 3 + 1] + \ldots \ldots \ldots \ldots .. + {\text{till }}\left( {n - 1} \right)terms \\
\Rightarrow 1 \cdot [7] + 2 \cdot [13] + ............ + {\text{ till }}\left( {n - 1} \right)terms \\
$
Let us try to find out the general term of the sequence.
\[1 \cdot [7] + 2 \cdot [13] + 3 \cdot [21]............ + {\text{ till }}\left( {n - 1} \right)terms\]
By observing the sequence we find that first part of the sequence is 1,2,3,4 …… till (n-1) terms, It’s general term is ‘x’ and the second part of the sequence in 7,13,21,….. till (n-1) terms , So we will try to find it’s general term.
$
S = 7 + 13 + 21 + ................... + {r_x} \to eqn(a) \\
S = 0 + 7 + 13 + 21 + .............. + {r_{x - 1}} + {r_x} \to eqn(b) \\
$
Subtracting equation b from equation a , by following the rule of subtracting first term from second and so on….
$
0 = 7 + 6 + 8 + ................ + ({r_x} - {r_{x - 1}}) - {r_x} \\
{r_x} = 7 + [6 + 8 + 10........ + ({r_x} - {r_{x - 1}})] \\
$
If we observe here 6,8,10 form an A.P. with common difference(d) = 2 and number of terms = (x-1). Applying the sum of first n natural number i.e.$ = \dfrac{n}{2}[2a + (n - 1)d]$
$
{r_x} = 7 + \{ \dfrac{{(x - 1)}}{2}[2 \times 6 + (x - 2) \times 2]\} \\
\Rightarrow {r_x} = 7 + \left\{ {\dfrac{{(x - 1)}}{2}[12 + 2x - 4]} \right\} \\
\Rightarrow {r_x} = 7 + \left\{ {\dfrac{{(x - 1)}}{2}[8 + 2x]} \right\} \\
\Rightarrow {r_x} = 7 + (x - 1)(4 + x) \\
\Rightarrow {r_x} = 7 + 4x + {x^2} - 4 - x \\
\Rightarrow {r_x} = 3 + 3x + {x^2} \\
$
By splitting the middle term we get
$
{r_x} = {x^2} + 2x + x + 2 + 1 \\
{r_x} = (x + 2)(x + 1) + 1 \\
$
So the final general term formed by the first and second sequence together will be as follows
\[{{\text{T}}_x} = x[(x + 1)(x + 2) + 1]{\text{ for }}x{\text{ = 1 to}}(n - 1)\]
This can also be written as
\[ \Rightarrow {\text{ }}{{\text{T}}_x} = {x^3}{\text{ + 3}}{{\text{x}}^2}{\text{ + 3x for }}x{\text{ = 1 to}}(n - 1)\]
Now ,we know the sum of sequence can be derived from general term as
$
{S_x} = \sum\limits_1^{n - 1} {{T_x}} \\
\therefore S = \sum {{x^3}} + 3 \cdot \sum {{x^2}} + 3 \cdot \sum x {\text{ for }}x = 1{\text{ to (n - 1)}} \\
$
We know
$
\sum {{x^3}} = {\text{ [}}\dfrac{{n(n + 1)}}{2}{]^2},\sum {{x^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6},\sum x = \dfrac{{n(n + 1)}}{2} \\
{\text{Here }}n{\text{ }} = {\text{ }}n{\text{ }} - 1 \\
\Rightarrow {[\dfrac{{n(n - 1)}}{2}]^2} + 3[\dfrac{{n(n - 1)(2n - 1)}}{6}] + 3[\dfrac{{n(n - 1)}}{2}] \\
\\
$
On Simplifying this , we get
\[ \Rightarrow \dfrac{1}{4}n(n - 1)({n^2} + 3n + 4)\]
Therefore , Option B is the correct option.
Note: All the identities of the cube root of unity and formulas for the sum of first natural numbers , their squares and cubes must be known for solving such similar questions. Attention must be given while substituting the values and also while forming the general term.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

