
The value of \[\tan \left( {{{\tan }^{ - 1}}\dfrac{{1 - {x^2}}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)\]
A) 1
B) Not defined
C) \[\sqrt 3 \]
D) \[\dfrac{1}{{\sqrt 3 }}\]
Answer
589.8k+ views
Hint: Here we will first convert \[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}}\] into the terms of \[{\tan ^{ - 1}}\theta \] and then use the formula of \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B\] to get the desired solution.
Formula used:
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
\[\tan \left( {{{\tan }^{ - 1}}x} \right) = x\]
Complete step-by-step answer:
The given expression is: -
\[\tan \left( {{{\tan }^{ - 1}}\dfrac{{1 - {x^2}}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)\]
We will first convert \[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}}\] into the terms of \[{\tan ^{ - 1}}\theta \]
We know that:
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = 2{\tan ^{ - 1}}x\]
Also,
\[2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}\]
Hence,
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}\]
Therefore, the expression becomes:
\[\tan \left( {{{\tan }^{ - 1}}\dfrac{{1 - {x^2}}}{{2x}} + {{\tan }^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}} \right)\]
Now applying the following formula:
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
We get:-
\[ = \tan \left( {{{\tan }^{ - 1}}\dfrac{{\dfrac{{1 - {x^2}}}{{2x}} + \dfrac{{2x}}{{1 - {x^2}}}}}{{1 - \left( {\dfrac{{1 - {x^2}}}{{2x}}} \right)\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)}}} \right)\]
Simplifying it further we get:-
\[ = \tan \left( {{{\tan }^{ - 1}}\dfrac{{\dfrac{{1 - {x^2}}}{{2x}} + \dfrac{{2x}}{{1 - {x^2}}}}}{{1 - 1}}} \right)\]
Taking the LCM and solving it further we get:-
\[ = \tan \left( {{{\tan }^{ - 1}}\dfrac{{\left( {1 - {x^2}} \right)\left( {1 - {x^2}} \right) + 2x\left( {2x} \right)}}{{0\left[ {\left( {2x} \right)\left( {1 - {x^2}} \right)} \right]}}} \right)\]
Simplifying it further we get:-
\[ = \tan \left( {{{\tan }^{ - 1}}\dfrac{{\left( {1 - {x^2}} \right)\left( {1 - {x^2}} \right) + 2x\left( {2x} \right)}}{0}} \right)\]
Now we know that:
\[\tan \left( {{{\tan }^{ - 1}}x} \right) = x\]
Hence applying this formula we get:-
\[ = \dfrac{{\left( {1 - {x^2}} \right)\left( {1 - {x^2}} \right) + 2x\left( {2x} \right)}}{0}\]
Now we know that:
Anything which is divided by 0 is not defined
Hence, we get:-
\[\tan \left( {{{\tan }^{ - 1}}\dfrac{{1 - {x^2}}}{{2x}} + {{\tan }^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}} \right) = {\text{not defined}}\]
This implies,
\[\tan \left( {{{\tan }^{ - 1}}\dfrac{{1 - {x^2}}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) = {\text{not defined}}\]
Therefore, option B is the correct option.
Note: Students can also convert \[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}}\] into the terms of \[{\tan ^{ - 1}}\theta \] using the following formula:-
\[{\cos ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 - {x^2}} }}{x}} \right)\]
Therefore,
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 - {{\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)}^2}} }}{{\dfrac{{1 - {x^2}}}{{1 + {x^2}}}}}} \right)\]
Solving it further we get:-
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\sqrt {{{\left( {1 + {x^2}} \right)}^2} - {{\left( {1 - {x^2}} \right)}^2}} }}{{1 + {x^2}}}}}{{\dfrac{{1 - {x^2}}}{{1 + {x^2}}}}}} \right)\]
Cancelling the terms we get:-
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {{{\left( {1 + {x^2}} \right)}^2} - {{\left( {1 - {x^2}} \right)}^2}} }}{{1 - {x^2}}}} \right)\]
Now using the following identity:-
\[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab\]
We get:-
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {4\left( 1 \right)\left( {{x^2}} \right)} }}{{1 - {x^2}}}} \right)\]
Solving it further we get:-
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {4{x^2}} }}{{1 - {x^2}}}} \right)\]
Taking the square root we get:-
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)\]
Formula used:
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
\[\tan \left( {{{\tan }^{ - 1}}x} \right) = x\]
Complete step-by-step answer:
The given expression is: -
\[\tan \left( {{{\tan }^{ - 1}}\dfrac{{1 - {x^2}}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)\]
We will first convert \[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}}\] into the terms of \[{\tan ^{ - 1}}\theta \]
We know that:
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = 2{\tan ^{ - 1}}x\]
Also,
\[2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}\]
Hence,
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}\]
Therefore, the expression becomes:
\[\tan \left( {{{\tan }^{ - 1}}\dfrac{{1 - {x^2}}}{{2x}} + {{\tan }^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}} \right)\]
Now applying the following formula:
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
We get:-
\[ = \tan \left( {{{\tan }^{ - 1}}\dfrac{{\dfrac{{1 - {x^2}}}{{2x}} + \dfrac{{2x}}{{1 - {x^2}}}}}{{1 - \left( {\dfrac{{1 - {x^2}}}{{2x}}} \right)\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)}}} \right)\]
Simplifying it further we get:-
\[ = \tan \left( {{{\tan }^{ - 1}}\dfrac{{\dfrac{{1 - {x^2}}}{{2x}} + \dfrac{{2x}}{{1 - {x^2}}}}}{{1 - 1}}} \right)\]
Taking the LCM and solving it further we get:-
\[ = \tan \left( {{{\tan }^{ - 1}}\dfrac{{\left( {1 - {x^2}} \right)\left( {1 - {x^2}} \right) + 2x\left( {2x} \right)}}{{0\left[ {\left( {2x} \right)\left( {1 - {x^2}} \right)} \right]}}} \right)\]
Simplifying it further we get:-
\[ = \tan \left( {{{\tan }^{ - 1}}\dfrac{{\left( {1 - {x^2}} \right)\left( {1 - {x^2}} \right) + 2x\left( {2x} \right)}}{0}} \right)\]
Now we know that:
\[\tan \left( {{{\tan }^{ - 1}}x} \right) = x\]
Hence applying this formula we get:-
\[ = \dfrac{{\left( {1 - {x^2}} \right)\left( {1 - {x^2}} \right) + 2x\left( {2x} \right)}}{0}\]
Now we know that:
Anything which is divided by 0 is not defined
Hence, we get:-
\[\tan \left( {{{\tan }^{ - 1}}\dfrac{{1 - {x^2}}}{{2x}} + {{\tan }^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}} \right) = {\text{not defined}}\]
This implies,
\[\tan \left( {{{\tan }^{ - 1}}\dfrac{{1 - {x^2}}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) = {\text{not defined}}\]
Therefore, option B is the correct option.
Note: Students can also convert \[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}}\] into the terms of \[{\tan ^{ - 1}}\theta \] using the following formula:-
\[{\cos ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 - {x^2}} }}{x}} \right)\]
Therefore,
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 - {{\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)}^2}} }}{{\dfrac{{1 - {x^2}}}{{1 + {x^2}}}}}} \right)\]
Solving it further we get:-
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\sqrt {{{\left( {1 + {x^2}} \right)}^2} - {{\left( {1 - {x^2}} \right)}^2}} }}{{1 + {x^2}}}}}{{\dfrac{{1 - {x^2}}}{{1 + {x^2}}}}}} \right)\]
Cancelling the terms we get:-
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {{{\left( {1 + {x^2}} \right)}^2} - {{\left( {1 - {x^2}} \right)}^2}} }}{{1 - {x^2}}}} \right)\]
Now using the following identity:-
\[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} = 4ab\]
We get:-
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {4\left( 1 \right)\left( {{x^2}} \right)} }}{{1 - {x^2}}}} \right)\]
Solving it further we get:-
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {4{x^2}} }}{{1 - {x^2}}}} \right)\]
Taking the square root we get:-
\[{\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}} = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)\]
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

