
The value of \[\sum\limits_{n=0}^{100}{{{i}^{n!}}}\] equals (where, \[i=\sqrt{-1}\] ).
Answer
612k+ views
Hint: Expand the value of \[{{i}^{n!}}\] from n = 0 to n = 100. Thus modify them by applying their factorial value. Now substitute the values of the power of iota and simplify it.
Complete step-by-step answer:
We have been given an expression for which we should find the value.
Given to us, \[\sum\limits_{n=0}^{100}{{{i}^{n!}}}\].
First let us expand \[{{i}^{n!}}\], where n = 0, 1, 2, 3,…….., 100 as it is given from n = 0 to n = 100.
Hence we can write it as,
\[\sum\limits_{n=0}^{100}{{{i}^{n!}}}={{1}^{0!}}+{{i}^{1!}}+{{i}^{2!}}+{{i}^{3!}}+......+{{i}^{100!}}-(1)\]
We know the basics of factorial,
\[\begin{align}
& 0!=1 \\
& 1!=1 \\
& 2!=2\times 1=2 \\
& 3!=3\times 2\times 1=6 \\
& 4!=4\times 3\times 2\times 1=24 \\
& 5!=5\times 4\times 3\times 2\times 1=120 \\
\end{align}\]
And thus it continues like this. Hence, we can modify (1) on the above basis as,
\[\sum\limits_{n=0}^{100}{{{i}^{n!}}}={{1}^{1}}+{{i}^{2}}+{{i}^{24}}+{{i}^{120}}+......+{{i}^{100!}}-(2)\]
We know that, \[{{i}^{2}}=-1\] and we have been given, \[i=\sqrt{-1}\].
Similarly, \[{{i}^{4}}=1,{{i}^{6}}=-1\]
Thus we can substitute these values in (2).
\[\begin{align}
& \sum\limits_{n=0}^{100}{{{i}^{n!}}}=i+i+\left( -1 \right)+\left( -1 \right)+1+1+1+......+1 \\
& \sum\limits_{n=0}^{100}{{{i}^{n!}}}=i+i-1-1+1+1+......+1 \\
\end{align}\]
\[\sum\limits_{n=0}^{100}{{{i}^{n!}}}=2i-2+1+1+1+.....+1\], here (+1) is repeated 97 times
\[\begin{align}
& \sum\limits_{n=0}^{100}{{{i}^{n!}}}=2i-2+97 \\
& \sum\limits_{n=0}^{100}{{{i}^{n!}}}=2i+95 \\
\end{align}\]
Hence, we got \[\sum\limits_{n=0}^{100}{{{i}^{n!}}}=2i+95\].
Thus we got the value of the given expression as \[\left( 2i+95 \right)\].
Note: To solve this question, you should know the concept of factorial as well as complex numbers. Expand the given expression from n = 0, 1, 2,…..,100. After this it will be easy to substitute factorial value. In \[{{i}^{3!}},{{i}^{4!}},....{{i}^{100!}}\] all their values will be (+1).
Complete step-by-step answer:
We have been given an expression for which we should find the value.
Given to us, \[\sum\limits_{n=0}^{100}{{{i}^{n!}}}\].
First let us expand \[{{i}^{n!}}\], where n = 0, 1, 2, 3,…….., 100 as it is given from n = 0 to n = 100.
Hence we can write it as,
\[\sum\limits_{n=0}^{100}{{{i}^{n!}}}={{1}^{0!}}+{{i}^{1!}}+{{i}^{2!}}+{{i}^{3!}}+......+{{i}^{100!}}-(1)\]
We know the basics of factorial,
\[\begin{align}
& 0!=1 \\
& 1!=1 \\
& 2!=2\times 1=2 \\
& 3!=3\times 2\times 1=6 \\
& 4!=4\times 3\times 2\times 1=24 \\
& 5!=5\times 4\times 3\times 2\times 1=120 \\
\end{align}\]
And thus it continues like this. Hence, we can modify (1) on the above basis as,
\[\sum\limits_{n=0}^{100}{{{i}^{n!}}}={{1}^{1}}+{{i}^{2}}+{{i}^{24}}+{{i}^{120}}+......+{{i}^{100!}}-(2)\]
We know that, \[{{i}^{2}}=-1\] and we have been given, \[i=\sqrt{-1}\].
Similarly, \[{{i}^{4}}=1,{{i}^{6}}=-1\]
Thus we can substitute these values in (2).
\[\begin{align}
& \sum\limits_{n=0}^{100}{{{i}^{n!}}}=i+i+\left( -1 \right)+\left( -1 \right)+1+1+1+......+1 \\
& \sum\limits_{n=0}^{100}{{{i}^{n!}}}=i+i-1-1+1+1+......+1 \\
\end{align}\]
\[\sum\limits_{n=0}^{100}{{{i}^{n!}}}=2i-2+1+1+1+.....+1\], here (+1) is repeated 97 times
\[\begin{align}
& \sum\limits_{n=0}^{100}{{{i}^{n!}}}=2i-2+97 \\
& \sum\limits_{n=0}^{100}{{{i}^{n!}}}=2i+95 \\
\end{align}\]
Hence, we got \[\sum\limits_{n=0}^{100}{{{i}^{n!}}}=2i+95\].
Thus we got the value of the given expression as \[\left( 2i+95 \right)\].
Note: To solve this question, you should know the concept of factorial as well as complex numbers. Expand the given expression from n = 0, 1, 2,…..,100. After this it will be easy to substitute factorial value. In \[{{i}^{3!}},{{i}^{4!}},....{{i}^{100!}}\] all their values will be (+1).
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

