
The value of $\sum\limits_{n = 1}^{10} {\left( {\sin \dfrac{{2n\pi }}{{11}} - i\cos \dfrac{{2n\pi }}{{11}}} \right)} $ is
A. $ - 1$
B. $0$
C. $ - i$
D. $i$
Answer
570.9k+ views
Hint: First multiply and divide the expression by $ - i$ to remove the imaginary part from the cosine part. After that use the formula $\cos \dfrac{{2n\pi }}{k} + i\sin \dfrac{{2n\pi }}{k} = {e^{i\dfrac{{2n\pi }}{k}}}$. Now expand the summation, it will form a G.P. After that use the sum of the G.P. formula $S = \dfrac{{a\left( {1 - {r^n}} \right)}}{{\left( {1 - r} \right)}}$ to find the sum of the terms. Then do the simplification to get the desired result.
Complete step-by-step solution:
The given expression is,
$ \Rightarrow \sum\limits_{n = 1}^{10} {\left( {\sin \dfrac{{2n\pi }}{{11}} - i\cos \dfrac{{2n\pi }}{{11}}} \right)} $
Multiply and divide the expression by $ - i$ to remove the imaginary part from the cosine,
$ \Rightarrow \sum\limits_{n = 1}^{10} {\left( {\sin \dfrac{{2n\pi }}{{11}} - i\cos \dfrac{{2n\pi }}{{11}}} \right)} \times \dfrac{i}{i}$
Multiply the numerator of the expression,
$ \Rightarrow \dfrac{1}{i}\sum\limits_{n = 1}^{10} {\left( {i\sin \dfrac{{2n\pi }}{{11}} - {i^2}\cos \dfrac{{2n\pi }}{{11}}} \right)} $
As we know that ${i^2} = - 1$. Then the expression will be,
$ \Rightarrow \dfrac{1}{i}\sum\limits_{n = 1}^{10} {\left( {i\sin \dfrac{{2n\pi }}{{11}} + \cos \dfrac{{2n\pi }}{{11}}} \right)} $
We know that,
$\cos \dfrac{{2n\pi }}{k} + i\sin \dfrac{{2n\pi }}{k} = {e^{i\dfrac{{2n\pi }}{k}}}$
Also, we know that,
${i^4} = 1$
Then the expression can be written as,
$ \Rightarrow \dfrac{{{i^4}}}{i}\sum\limits_{n = 1}^{10} {\left( {{e^{i\dfrac{{2n\pi }}{{11}}}}} \right)} $
Cancel out the common factors,
$ \Rightarrow {i^3}\sum\limits_{n = 1}^{10} {\left( {{e^{i\dfrac{{2n\pi }}{{11}}}}} \right)} $
Factor ${i^3}$ to ${i^2} \times i$,
$ \Rightarrow {i^2} \times i\sum\limits_{n = 1}^{10} {\left( {{e^{i\dfrac{{2n\pi }}{{11}}}}} \right)} $
As we know that ${i^2} = - 1$. Then the expression will be,
$ \Rightarrow - i\sum\limits_{n = 1}^{10} {\left( {{e^{i\dfrac{{2n\pi }}{{11}}}}} \right)} $
Expand the expression,
\[ \Rightarrow - i\left( {{e^{i\dfrac{{2\pi }}{{11}}}} + {e^{i\dfrac{{4\pi }}{{11}}}} + {e^{i\dfrac{{6\pi }}{{11}}}} + {e^{i\dfrac{{8\pi }}{{11}}}} + {e^{i\dfrac{{10\pi }}{{11}}}} + {e^{i\dfrac{{12\pi }}{{11}}}} + {e^{i\dfrac{{14\pi }}{{11}}}} + {e^{i\dfrac{{16\pi }}{{11}}}} + {e^{i\dfrac{{18\pi }}{{11}}}} + {e^{i\dfrac{{20\pi }}{{11}}}} + {e^{i\dfrac{{22\pi }}{{11}}}}} \right)\]
The above expression is in form of GP where $a = {e^{i\dfrac{{2\pi }}{{11}}}}$ and $r = {e^{i\dfrac{{2\pi }}{{11}}}}$.
The formula of the sum of GP is given by,
$\dfrac{{a\left( {1 - {r^n}} \right)}}{{\left( {1 - r} \right)}}$
Substitute the values in the expression,
$ \Rightarrow - i\left\{ {{e^{i\dfrac{{2\pi }}{{11}}}}\dfrac{{\left( {1 - {e^{i\dfrac{{20\pi }}{{11}}}}} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\}$
Multiply the terms inside the bracket,
$ \Rightarrow - i\left\{ {\dfrac{{\left( {{e^{i\dfrac{{2\pi }}{{11}}}} - {e^{i\dfrac{{22\pi }}{{11}}}}} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\}$
As we know that ${e^{i2\pi }} = 1$. Then,
$ \Rightarrow - i\left\{ {\dfrac{{\left( {{e^{i\dfrac{{2\pi }}{{11}}}} - 1} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\}$
Take -1 common from the numerator,
$ \Rightarrow - i\left\{ {\dfrac{{ - 1\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\}$
Cancel out the common factor,
$ \Rightarrow i$
Thus, the value of $\sum\limits_{n = 1}^{10} {\left( {\sin \dfrac{{2n\pi }}{{11}} - i\cos \dfrac{{2n\pi }}{{11}}} \right)} $ is $i$.
Hence, the option (D) is the correct answer.
Note: The complex numbers are the field C of numbers of the form $x + iy$, where x and y are real numbers and i is the imaginary unit equal to the square root of -1. When a single letter z is used to denote a complex number. It is denoted as $z = x + iy$.
A G.P is a sequence such that any element after the first is obtained by multiplying the preceding element by a constant called the common ratio.
Complete step-by-step solution:
The given expression is,
$ \Rightarrow \sum\limits_{n = 1}^{10} {\left( {\sin \dfrac{{2n\pi }}{{11}} - i\cos \dfrac{{2n\pi }}{{11}}} \right)} $
Multiply and divide the expression by $ - i$ to remove the imaginary part from the cosine,
$ \Rightarrow \sum\limits_{n = 1}^{10} {\left( {\sin \dfrac{{2n\pi }}{{11}} - i\cos \dfrac{{2n\pi }}{{11}}} \right)} \times \dfrac{i}{i}$
Multiply the numerator of the expression,
$ \Rightarrow \dfrac{1}{i}\sum\limits_{n = 1}^{10} {\left( {i\sin \dfrac{{2n\pi }}{{11}} - {i^2}\cos \dfrac{{2n\pi }}{{11}}} \right)} $
As we know that ${i^2} = - 1$. Then the expression will be,
$ \Rightarrow \dfrac{1}{i}\sum\limits_{n = 1}^{10} {\left( {i\sin \dfrac{{2n\pi }}{{11}} + \cos \dfrac{{2n\pi }}{{11}}} \right)} $
We know that,
$\cos \dfrac{{2n\pi }}{k} + i\sin \dfrac{{2n\pi }}{k} = {e^{i\dfrac{{2n\pi }}{k}}}$
Also, we know that,
${i^4} = 1$
Then the expression can be written as,
$ \Rightarrow \dfrac{{{i^4}}}{i}\sum\limits_{n = 1}^{10} {\left( {{e^{i\dfrac{{2n\pi }}{{11}}}}} \right)} $
Cancel out the common factors,
$ \Rightarrow {i^3}\sum\limits_{n = 1}^{10} {\left( {{e^{i\dfrac{{2n\pi }}{{11}}}}} \right)} $
Factor ${i^3}$ to ${i^2} \times i$,
$ \Rightarrow {i^2} \times i\sum\limits_{n = 1}^{10} {\left( {{e^{i\dfrac{{2n\pi }}{{11}}}}} \right)} $
As we know that ${i^2} = - 1$. Then the expression will be,
$ \Rightarrow - i\sum\limits_{n = 1}^{10} {\left( {{e^{i\dfrac{{2n\pi }}{{11}}}}} \right)} $
Expand the expression,
\[ \Rightarrow - i\left( {{e^{i\dfrac{{2\pi }}{{11}}}} + {e^{i\dfrac{{4\pi }}{{11}}}} + {e^{i\dfrac{{6\pi }}{{11}}}} + {e^{i\dfrac{{8\pi }}{{11}}}} + {e^{i\dfrac{{10\pi }}{{11}}}} + {e^{i\dfrac{{12\pi }}{{11}}}} + {e^{i\dfrac{{14\pi }}{{11}}}} + {e^{i\dfrac{{16\pi }}{{11}}}} + {e^{i\dfrac{{18\pi }}{{11}}}} + {e^{i\dfrac{{20\pi }}{{11}}}} + {e^{i\dfrac{{22\pi }}{{11}}}}} \right)\]
The above expression is in form of GP where $a = {e^{i\dfrac{{2\pi }}{{11}}}}$ and $r = {e^{i\dfrac{{2\pi }}{{11}}}}$.
The formula of the sum of GP is given by,
$\dfrac{{a\left( {1 - {r^n}} \right)}}{{\left( {1 - r} \right)}}$
Substitute the values in the expression,
$ \Rightarrow - i\left\{ {{e^{i\dfrac{{2\pi }}{{11}}}}\dfrac{{\left( {1 - {e^{i\dfrac{{20\pi }}{{11}}}}} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\}$
Multiply the terms inside the bracket,
$ \Rightarrow - i\left\{ {\dfrac{{\left( {{e^{i\dfrac{{2\pi }}{{11}}}} - {e^{i\dfrac{{22\pi }}{{11}}}}} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\}$
As we know that ${e^{i2\pi }} = 1$. Then,
$ \Rightarrow - i\left\{ {\dfrac{{\left( {{e^{i\dfrac{{2\pi }}{{11}}}} - 1} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\}$
Take -1 common from the numerator,
$ \Rightarrow - i\left\{ {\dfrac{{ - 1\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\}$
Cancel out the common factor,
$ \Rightarrow i$
Thus, the value of $\sum\limits_{n = 1}^{10} {\left( {\sin \dfrac{{2n\pi }}{{11}} - i\cos \dfrac{{2n\pi }}{{11}}} \right)} $ is $i$.
Hence, the option (D) is the correct answer.
Note: The complex numbers are the field C of numbers of the form $x + iy$, where x and y are real numbers and i is the imaginary unit equal to the square root of -1. When a single letter z is used to denote a complex number. It is denoted as $z = x + iy$.
A G.P is a sequence such that any element after the first is obtained by multiplying the preceding element by a constant called the common ratio.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

