
The value of \[si{n^6}\theta + co{s^6}\theta + 3si{n^2}\theta .co{s^2}\theta \;\]is :-
\[
{\mathbf{A}}.\,0 \\
{\mathbf{B}}.\, - 1 \\
{\mathbf{C}}.{\text{ }}1 \\
{\mathbf{D}}.\;{\text{ }}2 \\
\]
Answer
599.4k+ views
Hint – Use the formula of \[{(a + b)^3}\] putting \[a = {\sin ^2}\theta \,\,\& \,\,b = {\cos ^2}\theta \].
We know \[{(a + b)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}\,\,\,\,\,\,\,\,\,......(i)\]
Let \[a = {\sin ^2}\theta \,\,\& \,\,b = {\cos ^2}\theta \]
We also know \[{\sin ^2}\theta + {\cos ^2}\theta = 1\,\,\,\,\,\,\,...........(ii)\]
Then putting the value of \[a\& b\] in \[{\text{(}}i{\text{)}}\]
We get,
\[{({\sin ^2}\theta + {\cos ^2}\theta )^3} = {\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta ({\sin ^2}\theta + {\cos ^2}\theta )\]
\[{\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta (1) = 1\,\,\,\,\,\,\,({\text{from (}}ii{\text{)}})\]
\[{\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta = 1\,\,\,\,\,\,\,({\text{from (}}ii{\text{)}})\]
Hence the answer is \[C\].
Note – In these type of questions of trigonometry we have to use basic concepts like \[{\text{(}}{\sin ^2}\theta + {\cos ^2}\theta = 1)\] and we also used the general formula of \[{{\text{(a + b)}}^{3\;}}\], then we can
get the solution by solving the equation.
We know \[{(a + b)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}\,\,\,\,\,\,\,\,\,......(i)\]
Let \[a = {\sin ^2}\theta \,\,\& \,\,b = {\cos ^2}\theta \]
We also know \[{\sin ^2}\theta + {\cos ^2}\theta = 1\,\,\,\,\,\,\,...........(ii)\]
Then putting the value of \[a\& b\] in \[{\text{(}}i{\text{)}}\]
We get,
\[{({\sin ^2}\theta + {\cos ^2}\theta )^3} = {\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta ({\sin ^2}\theta + {\cos ^2}\theta )\]
\[{\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta (1) = 1\,\,\,\,\,\,\,({\text{from (}}ii{\text{)}})\]
\[{\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta = 1\,\,\,\,\,\,\,({\text{from (}}ii{\text{)}})\]
Hence the answer is \[C\].
Note – In these type of questions of trigonometry we have to use basic concepts like \[{\text{(}}{\sin ^2}\theta + {\cos ^2}\theta = 1)\] and we also used the general formula of \[{{\text{(a + b)}}^{3\;}}\], then we can
get the solution by solving the equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

