
The value of \[si{n^6}\theta + co{s^6}\theta + 3si{n^2}\theta .co{s^2}\theta \;\]is :-
\[
{\mathbf{A}}.\,0 \\
{\mathbf{B}}.\, - 1 \\
{\mathbf{C}}.{\text{ }}1 \\
{\mathbf{D}}.\;{\text{ }}2 \\
\]
Answer
623.7k+ views
Hint – Use the formula of \[{(a + b)^3}\] putting \[a = {\sin ^2}\theta \,\,\& \,\,b = {\cos ^2}\theta \].
We know \[{(a + b)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}\,\,\,\,\,\,\,\,\,......(i)\]
Let \[a = {\sin ^2}\theta \,\,\& \,\,b = {\cos ^2}\theta \]
We also know \[{\sin ^2}\theta + {\cos ^2}\theta = 1\,\,\,\,\,\,\,...........(ii)\]
Then putting the value of \[a\& b\] in \[{\text{(}}i{\text{)}}\]
We get,
\[{({\sin ^2}\theta + {\cos ^2}\theta )^3} = {\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta ({\sin ^2}\theta + {\cos ^2}\theta )\]
\[{\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta (1) = 1\,\,\,\,\,\,\,({\text{from (}}ii{\text{)}})\]
\[{\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta = 1\,\,\,\,\,\,\,({\text{from (}}ii{\text{)}})\]
Hence the answer is \[C\].
Note – In these type of questions of trigonometry we have to use basic concepts like \[{\text{(}}{\sin ^2}\theta + {\cos ^2}\theta = 1)\] and we also used the general formula of \[{{\text{(a + b)}}^{3\;}}\], then we can
get the solution by solving the equation.
We know \[{(a + b)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}\,\,\,\,\,\,\,\,\,......(i)\]
Let \[a = {\sin ^2}\theta \,\,\& \,\,b = {\cos ^2}\theta \]
We also know \[{\sin ^2}\theta + {\cos ^2}\theta = 1\,\,\,\,\,\,\,...........(ii)\]
Then putting the value of \[a\& b\] in \[{\text{(}}i{\text{)}}\]
We get,
\[{({\sin ^2}\theta + {\cos ^2}\theta )^3} = {\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta ({\sin ^2}\theta + {\cos ^2}\theta )\]
\[{\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta (1) = 1\,\,\,\,\,\,\,({\text{from (}}ii{\text{)}})\]
\[{\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta = 1\,\,\,\,\,\,\,({\text{from (}}ii{\text{)}})\]
Hence the answer is \[C\].
Note – In these type of questions of trigonometry we have to use basic concepts like \[{\text{(}}{\sin ^2}\theta + {\cos ^2}\theta = 1)\] and we also used the general formula of \[{{\text{(a + b)}}^{3\;}}\], then we can
get the solution by solving the equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

