
The value of $\sin {{20}^{\circ }}\left( 4+\sec {{20}^{\circ }} \right)$ is
$1)\text{ }0$
$2)\text{ 1}$
$3)\text{ }\sqrt{2}$
$4)\text{ }\sqrt{3}$
Answer
499.8k+ views
Hint: In this question we have been given with a trigonometric expression for which we have to find the value of the expression. We will solve this expression by writing the expression and simplifying it. We will use the half-angle formula which is given as $\sin 2\theta =2\sin \theta \cos \theta $. We will then use the expansion formula of $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$ and then simplify the expression to get the required solution.
Complete step-by-step solution:
We have the expression given to us as:
$\Rightarrow \sin {{20}^{\circ }}\left( 4+\sec {{20}^{\circ }} \right)$
We know that $\cos x=\dfrac{1}{\sec x}$ therefore, on substituting, we get:
$\Rightarrow \sin {{20}^{\circ }}\left( 4+\dfrac{1}{\cos {{20}^{\circ }}} \right)$
On multiplying the terms, we get:
$\Rightarrow 4\sin {{20}^{\circ }}+\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
On taking the lowest common multiple, we get:
$\Rightarrow \dfrac{4\sin {{20}^{\circ }}\cos {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
We can write the expression as:
$\Rightarrow \dfrac{2\left( 2\sin {{20}^{\circ }}\cos {{20}^{\circ }} \right)+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
On using the formula $\sin 2\theta =2\sin \theta \cos \theta $, we get:
$\Rightarrow \dfrac{2\sin {{40}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
Now we can expression ${{40}^{\circ }}$ as ${{60}^{\circ }}-{{40}^{\circ }}$ therefore, on substituting, we get:
\[\Rightarrow \dfrac{2\sin \left( {{60}^{\circ }}-{{40}^{\circ }} \right)+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
Now on using the formula $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$, we get:
\[\Rightarrow \dfrac{2\sin {{60}^{\circ }}\cos {{20}^{\circ }}-2\cos {{60}^{\circ }}\sin {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
Now we know that $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and $\cos {{60}^{\circ }}=\dfrac{1}{2}$ therefore, on substituting, we get:
\[\Rightarrow \dfrac{2\left( \dfrac{\sqrt{3}}{2} \right)\cos {{20}^{\circ }}-2\left( \dfrac{1}{2} \right)\sin {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
On simplifying, we get:
\[\Rightarrow \dfrac{\sqrt{3}\cos {{20}^{\circ }}-\sin {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
On subtracting the similar terms, we get:
\[\Rightarrow \dfrac{\sqrt{3}\cos {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
On simplifying, we get:
\[\Rightarrow \sqrt{3}\], which is the required value.
Therefore, we can write $\sin {{20}^{\circ }}\left( 4+\sec {{20}^{\circ }} \right)=\sqrt{3}$, which is the required solution.
Note: It is to be remembered that to add two or more fractions, the denominator of both them should be the same, if the denominator is not the same, the lowest common multiple known as L.C.M should be taken. The various trigonometric identities and formulae should be remembered while doing these types of sums. The various Pythagorean identities should also be remembered while doing these types of questions.
Complete step-by-step solution:
We have the expression given to us as:
$\Rightarrow \sin {{20}^{\circ }}\left( 4+\sec {{20}^{\circ }} \right)$
We know that $\cos x=\dfrac{1}{\sec x}$ therefore, on substituting, we get:
$\Rightarrow \sin {{20}^{\circ }}\left( 4+\dfrac{1}{\cos {{20}^{\circ }}} \right)$
On multiplying the terms, we get:
$\Rightarrow 4\sin {{20}^{\circ }}+\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
On taking the lowest common multiple, we get:
$\Rightarrow \dfrac{4\sin {{20}^{\circ }}\cos {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
We can write the expression as:
$\Rightarrow \dfrac{2\left( 2\sin {{20}^{\circ }}\cos {{20}^{\circ }} \right)+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
On using the formula $\sin 2\theta =2\sin \theta \cos \theta $, we get:
$\Rightarrow \dfrac{2\sin {{40}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
Now we can expression ${{40}^{\circ }}$ as ${{60}^{\circ }}-{{40}^{\circ }}$ therefore, on substituting, we get:
\[\Rightarrow \dfrac{2\sin \left( {{60}^{\circ }}-{{40}^{\circ }} \right)+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
Now on using the formula $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$, we get:
\[\Rightarrow \dfrac{2\sin {{60}^{\circ }}\cos {{20}^{\circ }}-2\cos {{60}^{\circ }}\sin {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
Now we know that $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and $\cos {{60}^{\circ }}=\dfrac{1}{2}$ therefore, on substituting, we get:
\[\Rightarrow \dfrac{2\left( \dfrac{\sqrt{3}}{2} \right)\cos {{20}^{\circ }}-2\left( \dfrac{1}{2} \right)\sin {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
On simplifying, we get:
\[\Rightarrow \dfrac{\sqrt{3}\cos {{20}^{\circ }}-\sin {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
On subtracting the similar terms, we get:
\[\Rightarrow \dfrac{\sqrt{3}\cos {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
On simplifying, we get:
\[\Rightarrow \sqrt{3}\], which is the required value.
Therefore, we can write $\sin {{20}^{\circ }}\left( 4+\sec {{20}^{\circ }} \right)=\sqrt{3}$, which is the required solution.
Note: It is to be remembered that to add two or more fractions, the denominator of both them should be the same, if the denominator is not the same, the lowest common multiple known as L.C.M should be taken. The various trigonometric identities and formulae should be remembered while doing these types of sums. The various Pythagorean identities should also be remembered while doing these types of questions.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

