
The value of $\sin {{20}^{\circ }}\left( 4+\sec {{20}^{\circ }} \right)$ is
$1)\text{ }0$
$2)\text{ 1}$
$3)\text{ }\sqrt{2}$
$4)\text{ }\sqrt{3}$
Answer
501k+ views
Hint: In this question we have been given with a trigonometric expression for which we have to find the value of the expression. We will solve this expression by writing the expression and simplifying it. We will use the half-angle formula which is given as $\sin 2\theta =2\sin \theta \cos \theta $. We will then use the expansion formula of $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$ and then simplify the expression to get the required solution.
Complete step-by-step solution:
We have the expression given to us as:
$\Rightarrow \sin {{20}^{\circ }}\left( 4+\sec {{20}^{\circ }} \right)$
We know that $\cos x=\dfrac{1}{\sec x}$ therefore, on substituting, we get:
$\Rightarrow \sin {{20}^{\circ }}\left( 4+\dfrac{1}{\cos {{20}^{\circ }}} \right)$
On multiplying the terms, we get:
$\Rightarrow 4\sin {{20}^{\circ }}+\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
On taking the lowest common multiple, we get:
$\Rightarrow \dfrac{4\sin {{20}^{\circ }}\cos {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
We can write the expression as:
$\Rightarrow \dfrac{2\left( 2\sin {{20}^{\circ }}\cos {{20}^{\circ }} \right)+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
On using the formula $\sin 2\theta =2\sin \theta \cos \theta $, we get:
$\Rightarrow \dfrac{2\sin {{40}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
Now we can expression ${{40}^{\circ }}$ as ${{60}^{\circ }}-{{40}^{\circ }}$ therefore, on substituting, we get:
\[\Rightarrow \dfrac{2\sin \left( {{60}^{\circ }}-{{40}^{\circ }} \right)+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
Now on using the formula $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$, we get:
\[\Rightarrow \dfrac{2\sin {{60}^{\circ }}\cos {{20}^{\circ }}-2\cos {{60}^{\circ }}\sin {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
Now we know that $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and $\cos {{60}^{\circ }}=\dfrac{1}{2}$ therefore, on substituting, we get:
\[\Rightarrow \dfrac{2\left( \dfrac{\sqrt{3}}{2} \right)\cos {{20}^{\circ }}-2\left( \dfrac{1}{2} \right)\sin {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
On simplifying, we get:
\[\Rightarrow \dfrac{\sqrt{3}\cos {{20}^{\circ }}-\sin {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
On subtracting the similar terms, we get:
\[\Rightarrow \dfrac{\sqrt{3}\cos {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
On simplifying, we get:
\[\Rightarrow \sqrt{3}\], which is the required value.
Therefore, we can write $\sin {{20}^{\circ }}\left( 4+\sec {{20}^{\circ }} \right)=\sqrt{3}$, which is the required solution.
Note: It is to be remembered that to add two or more fractions, the denominator of both them should be the same, if the denominator is not the same, the lowest common multiple known as L.C.M should be taken. The various trigonometric identities and formulae should be remembered while doing these types of sums. The various Pythagorean identities should also be remembered while doing these types of questions.
Complete step-by-step solution:
We have the expression given to us as:
$\Rightarrow \sin {{20}^{\circ }}\left( 4+\sec {{20}^{\circ }} \right)$
We know that $\cos x=\dfrac{1}{\sec x}$ therefore, on substituting, we get:
$\Rightarrow \sin {{20}^{\circ }}\left( 4+\dfrac{1}{\cos {{20}^{\circ }}} \right)$
On multiplying the terms, we get:
$\Rightarrow 4\sin {{20}^{\circ }}+\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
On taking the lowest common multiple, we get:
$\Rightarrow \dfrac{4\sin {{20}^{\circ }}\cos {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
We can write the expression as:
$\Rightarrow \dfrac{2\left( 2\sin {{20}^{\circ }}\cos {{20}^{\circ }} \right)+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
On using the formula $\sin 2\theta =2\sin \theta \cos \theta $, we get:
$\Rightarrow \dfrac{2\sin {{40}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}$
Now we can expression ${{40}^{\circ }}$ as ${{60}^{\circ }}-{{40}^{\circ }}$ therefore, on substituting, we get:
\[\Rightarrow \dfrac{2\sin \left( {{60}^{\circ }}-{{40}^{\circ }} \right)+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
Now on using the formula $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$, we get:
\[\Rightarrow \dfrac{2\sin {{60}^{\circ }}\cos {{20}^{\circ }}-2\cos {{60}^{\circ }}\sin {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
Now we know that $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and $\cos {{60}^{\circ }}=\dfrac{1}{2}$ therefore, on substituting, we get:
\[\Rightarrow \dfrac{2\left( \dfrac{\sqrt{3}}{2} \right)\cos {{20}^{\circ }}-2\left( \dfrac{1}{2} \right)\sin {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
On simplifying, we get:
\[\Rightarrow \dfrac{\sqrt{3}\cos {{20}^{\circ }}-\sin {{20}^{\circ }}+\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
On subtracting the similar terms, we get:
\[\Rightarrow \dfrac{\sqrt{3}\cos {{20}^{\circ }}}{\cos {{20}^{\circ }}}\]
On simplifying, we get:
\[\Rightarrow \sqrt{3}\], which is the required value.
Therefore, we can write $\sin {{20}^{\circ }}\left( 4+\sec {{20}^{\circ }} \right)=\sqrt{3}$, which is the required solution.
Note: It is to be remembered that to add two or more fractions, the denominator of both them should be the same, if the denominator is not the same, the lowest common multiple known as L.C.M should be taken. The various trigonometric identities and formulae should be remembered while doing these types of sums. The various Pythagorean identities should also be remembered while doing these types of questions.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

