
The value of $r$ for which
${}^{20}{{C}_{r}}{}^{20}{{C}_{0}}+{}^{20}{{C}_{r-1}}{}^{20}{{C}_{1}}+{}^{20}{{C}_{r-2}}{}^{20}{{C}_{2}}+---+{}^{20}{{C}_{0}}{}^{20}{{C}_{r}}$
is maximum is
(a) $20$
(b) $15$
(c) $11$
(d) $10$
Answer
587.1k+ views
Hint: We have to find the value of $r$ at which ${}^{20}{{C}_{r}}{}^{20}{{C}_{0}}+---+{}^{20}{{C}_{0}}{}^{20}{{C}_{r}}$ is maximum. To do so, we will first use the Binomial expansion of $n$ which is given as, \[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{o}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+--+{}^{n}{{C}_{n}}{{x}^{n}}\] with this we will expand \[{{\left( 1+x \right)}^{20}}\] and \[{{\left( 1+x \right)}^{40}}\] as we know ${{x}^{a}}.{{x}^{b}}={{x}^{a+b}}$ so \[{{\left( 1+x \right)}^{20}}.{{\left( 1+x \right)}^{20}}={{\left( 1+x \right)}^{40}}\] , we will use this to expand \[{{\left( 1+x \right)}^{40}}\] . Using this, we will get the general term of \[{{\left( 1+x \right)}^{40}}\] . And we know for $n=even$ ${{T}_{r}}$ is maximum at $r=\dfrac{n}{2}$ , we will use this to get the final answer.
Complete step-by-step answer:
We are asked to find the value of $r$ such that
${}^{20}{{C}_{r}}{}^{20}{{C}_{0}}+{}^{20}{{C}_{r-1}}{}^{20}{{C}_{1}}+{}^{20}{{C}_{r-2}}{}^{20}{{C}_{2}}+---+{}^{20}{{C}_{0}}{}^{20}{{C}_{r}}$ is maximum.
We know that Binomial expansion of \[{{\left( 1+n \right)}^{n}}\] is given as,
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+--+{}^{n}{{C}_{n}}{{x}^{n}}\]
So for $n=20$
\[{{\left( 1+x \right)}^{20}}\] will be given as,
\[{{\left( 1+x \right)}^{20}}={}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}x+{}^{20}{{C}_{2}}{{x}^{2}}+--+{}^{20}{{C}_{20}}{{x}^{20}}\]
Similarly \[{{\left( 1+x \right)}^{40}}\] will be written as,
\[{{\left( 1+x \right)}^{40}}={}^{40}{{C}_{0}}+{}^{40}{{C}_{1}}x+--+{}^{40}{{C}_{40}}{{x}^{40}}\]
Now we know,
\[{{\left( 1+x \right)}^{40}}={{\left( 1+x \right)}^{20+20}}\] $\left[ as\ {{x}^{a+b}}={{x}^{a}}.{{x}^{b}} \right]$
So
\[\text{ }={{\left( 1+x \right)}^{20}}{{\left( 1+x \right)}^{20}}\]
Now putting value of \[{{\left( 1+x \right)}^{20}}\] from above expression, we get,
\[{{\left( 1+x \right)}^{40}}=\left( {}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}x+--+{}^{20}{{C}_{20}}{{x}^{20}} \right)\left( {}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}x+--+{}^{20}{{C}_{20}}{{x}^{20}} \right)\]
When we expand the general term for \[{{\left( 1+x \right)}^{40}}\] will be given as, ${{T}_{r}}={}^{20}{{C}_{0}}{}^{20}{{C}_{r}}{{x}^{r}}+{}^{20}{{C}_{1}}{{x}^{r}}.{}^{20}{{C}_{r-1}}+---+{}^{20}{{C}_{r}}{{x}^{r}}.{}^{20}{{C}_{0}}$
Taking ${{x}^{r}}$ common , we get,
${{T}_{r}}=\left( {}^{20}{{C}_{0}}{}^{20}{{C}_{r}}+{}^{20}{{C}_{1}}{}^{20}{{C}_{r-1}}+---+{}^{20}{{C}_{r}}{}^{20}{{C}_{0}} \right){{x}^{r}}$
Now comparing the general with general term of \[{{\left( 1+x \right)}^{40}}\] which is given as \[^{40}{{C}_{r}}{{x}^{r}}\] we get,
$\left( {}^{20}{{C}_{0}}{}^{20}{{C}_{r}}+{}^{20}{{C}_{1}}{}^{20}{{C}_{r-1}}+---+{}^{20}{{C}_{r}}{}^{20}{{C}_{0}} \right){{x}^{r}}{{=}^{40}}{{C}_{r}}{{x}^{r}}$
${{\Rightarrow }^{40}}{{C}_{r}}={}^{20}{{C}_{0}}{}^{20}{{C}_{r}}+{}^{20}{{C}_{1}}{}^{20}{{C}_{r-1}}+---+{}^{20}{{C}_{r}}{}^{20}{{C}_{0}}$
So maximum value of ${}^{20}{{C}_{0}}{}^{20}{{C}_{r}}+{}^{20}{{C}_{1}}{}^{20}{{C}_{r-1}}+---+{}^{20}{{C}_{r}}{}^{20}{{C}_{0}}$ in same as maximum value of \[^{40}{{C}_{r}}\] .
We know that,
${}^{n}{{C}_{r}}$ is maximum when $r=\dfrac{n}{2}$
If $n$ is even,
For \[^{40}{{C}_{r}}\] , $n=40$ which is even. So we get,
\[^{40}{{C}_{r}}\] is maximum at $r=\dfrac{n}{2}$
$\Rightarrow r=\dfrac{40}{2}=20$
So, the correct answer is “Option (a)”.
Note: When we multiply two terms with more than $1$ element then each element of first term get multiplied by other terms all elements , this same process will be done when ${{\left( 1+x \right)}^{20}}$ is multiplied with ${{\left( 1+x \right)}^{20}}$ with the help of this we get the general term ${{T}_{r}}$ for ${{\left( 1+x \right)}^{40}}$ .
Complete step-by-step answer:
We are asked to find the value of $r$ such that
${}^{20}{{C}_{r}}{}^{20}{{C}_{0}}+{}^{20}{{C}_{r-1}}{}^{20}{{C}_{1}}+{}^{20}{{C}_{r-2}}{}^{20}{{C}_{2}}+---+{}^{20}{{C}_{0}}{}^{20}{{C}_{r}}$ is maximum.
We know that Binomial expansion of \[{{\left( 1+n \right)}^{n}}\] is given as,
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+--+{}^{n}{{C}_{n}}{{x}^{n}}\]
So for $n=20$
\[{{\left( 1+x \right)}^{20}}\] will be given as,
\[{{\left( 1+x \right)}^{20}}={}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}x+{}^{20}{{C}_{2}}{{x}^{2}}+--+{}^{20}{{C}_{20}}{{x}^{20}}\]
Similarly \[{{\left( 1+x \right)}^{40}}\] will be written as,
\[{{\left( 1+x \right)}^{40}}={}^{40}{{C}_{0}}+{}^{40}{{C}_{1}}x+--+{}^{40}{{C}_{40}}{{x}^{40}}\]
Now we know,
\[{{\left( 1+x \right)}^{40}}={{\left( 1+x \right)}^{20+20}}\] $\left[ as\ {{x}^{a+b}}={{x}^{a}}.{{x}^{b}} \right]$
So
\[\text{ }={{\left( 1+x \right)}^{20}}{{\left( 1+x \right)}^{20}}\]
Now putting value of \[{{\left( 1+x \right)}^{20}}\] from above expression, we get,
\[{{\left( 1+x \right)}^{40}}=\left( {}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}x+--+{}^{20}{{C}_{20}}{{x}^{20}} \right)\left( {}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}x+--+{}^{20}{{C}_{20}}{{x}^{20}} \right)\]
When we expand the general term for \[{{\left( 1+x \right)}^{40}}\] will be given as, ${{T}_{r}}={}^{20}{{C}_{0}}{}^{20}{{C}_{r}}{{x}^{r}}+{}^{20}{{C}_{1}}{{x}^{r}}.{}^{20}{{C}_{r-1}}+---+{}^{20}{{C}_{r}}{{x}^{r}}.{}^{20}{{C}_{0}}$
Taking ${{x}^{r}}$ common , we get,
${{T}_{r}}=\left( {}^{20}{{C}_{0}}{}^{20}{{C}_{r}}+{}^{20}{{C}_{1}}{}^{20}{{C}_{r-1}}+---+{}^{20}{{C}_{r}}{}^{20}{{C}_{0}} \right){{x}^{r}}$
Now comparing the general with general term of \[{{\left( 1+x \right)}^{40}}\] which is given as \[^{40}{{C}_{r}}{{x}^{r}}\] we get,
$\left( {}^{20}{{C}_{0}}{}^{20}{{C}_{r}}+{}^{20}{{C}_{1}}{}^{20}{{C}_{r-1}}+---+{}^{20}{{C}_{r}}{}^{20}{{C}_{0}} \right){{x}^{r}}{{=}^{40}}{{C}_{r}}{{x}^{r}}$
${{\Rightarrow }^{40}}{{C}_{r}}={}^{20}{{C}_{0}}{}^{20}{{C}_{r}}+{}^{20}{{C}_{1}}{}^{20}{{C}_{r-1}}+---+{}^{20}{{C}_{r}}{}^{20}{{C}_{0}}$
So maximum value of ${}^{20}{{C}_{0}}{}^{20}{{C}_{r}}+{}^{20}{{C}_{1}}{}^{20}{{C}_{r-1}}+---+{}^{20}{{C}_{r}}{}^{20}{{C}_{0}}$ in same as maximum value of \[^{40}{{C}_{r}}\] .
We know that,
${}^{n}{{C}_{r}}$ is maximum when $r=\dfrac{n}{2}$
If $n$ is even,
For \[^{40}{{C}_{r}}\] , $n=40$ which is even. So we get,
\[^{40}{{C}_{r}}\] is maximum at $r=\dfrac{n}{2}$
$\Rightarrow r=\dfrac{40}{2}=20$
So, the correct answer is “Option (a)”.
Note: When we multiply two terms with more than $1$ element then each element of first term get multiplied by other terms all elements , this same process will be done when ${{\left( 1+x \right)}^{20}}$ is multiplied with ${{\left( 1+x \right)}^{20}}$ with the help of this we get the general term ${{T}_{r}}$ for ${{\left( 1+x \right)}^{40}}$ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

