
The value of \[\int{\sqrt{\sec x-1}dx}\] is equal to
Answer
602.4k+ views
Hint:Simplify the expression \[\int{\sqrt{\sec x-1}dx}\] using \[\sec x=\dfrac{1}{\cos x}\] . We know the formula,
\[\cos 2x=2{{\cos }^{2}}x-1\] and \[\cos 2x=1-2si{{n}^{2}}x\Rightarrow 2si{{n}^{2}}x=1-\cos 2x\] .Then, replace x by \[\dfrac{x}{2}\]
in these two formulas. Use these two formulas and transform \[\int{\sqrt{\dfrac{1-\cos x}{\cos x}}dx}\] . Now, assume \[t=\sqrt{2}cos\dfrac{x}{2}\] and transform the equation \[\int{\sqrt{\dfrac{1}{2{{\cos }^{2}}\dfrac{x}{2}-1}}\times \sqrt{2}\sin \dfrac{x}{2}dx}\] . We know the formula \[\dfrac{d\left( \cos ax \right)}{dx}=\dfrac{1}{a}\left( -\sin ax \right)\] and
\[\int{\sqrt{\dfrac{1}{{{t}^{2}}-1}}dt=\left[ \ln \left[ \sqrt{{{t}^{2}}-1}+t \right] \right]}+C\] . Use these formulas and solve it further.
Complete step-by-step answer:
According to the question, we have to integrate,
\[\int{\sqrt{\sec x-1}dx}\] ……………….(1)
We know that cosine function is reciprocal of sec function.
\[\sec x=\dfrac{1}{\cos x}\] …………………..(2)
Putting the value of \[\sec x\] from equation (2) in equation (1), we get
\[\int{\sqrt{\sec x-1}dx}\]
\[=\int{\sqrt{\dfrac{1}{\cos x}-1}dx}\]
\[=\int{\sqrt{\dfrac{1-\cos x}{\cos x}}dx}\] ……………………(3)
We know the formula, \[\cos 2x=2{{\cos }^{2}}x-1\] .
Replacing x by \[\dfrac{x}{2}\] in the above formula, we get
\[\cos 2.\dfrac{x}{2}=2{{\cos }^{2}}\dfrac{x}{2}-1\]
\[\Rightarrow \cos x=2{{\cos }^{2}}\dfrac{x}{2}-1\] ………………………(4)
We know the formula, \[\cos 2x=1-2si{{n}^{2}}x\] .
Replacing x by \[\dfrac{x}{2}\] in the above formula, we get
\[\cos 2.\dfrac{x}{2}=1-2si{{n}^{2}}\dfrac{x}{2}\]
\[\Rightarrow \cos x=1-2si{{n}^{2}}\dfrac{x}{2}\]
\[\Rightarrow 2si{{n}^{2}}\dfrac{x}{2}=1-\cos x\] ………………………(5)
Now, from equation (3), equation (4), and equation (5), we get
\[=\int{\sqrt{\dfrac{1-\cos x}{\cos x}}dx}\]
\[=\int{\sqrt{\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}-1}}dx}\]
\[=\int{\sqrt{\dfrac{1}{2{{\cos }^{2}}\dfrac{x}{2}-1}}\times \sqrt{2}\sin \dfrac{x}{2}dx}\] ………………..(6)
Let us assume, \[t=\sqrt{2}cos\dfrac{x}{2}\] ……………………..(7)
Differentiating with respect to x in equation (7), we get
\[\dfrac{dt}{dx}=\dfrac{d\left( \sqrt{2}cos\dfrac{x}{2} \right)}{dx}\]
\[\dfrac{dt}{dx}=\sqrt{2}\dfrac{d\left( \cos \dfrac{x}{2} \right)}{dx}\] ……………………….(8)
We know the formula, \[\dfrac{d\left( \cos ax \right)}{dx}=\dfrac{1}{a}\left( -\sin ax \right)\] .
Replacing x by \[\dfrac{x}{2}\] and a by \[\dfrac{1}{2}\] in the above formula, we get
\[\dfrac{d\left( \cos \dfrac{x}{2} \right)}{dx}=\dfrac{1}{2}\left( -\sin \dfrac{x}{2} \right)\] ……………………(9)
Now, from equation (8) and equation (9), we get
\[\dfrac{dt}{dx}=\sqrt{2}\dfrac{d\left( \cos \dfrac{x}{2} \right)}{dx}\]
\[\begin{align}
& \dfrac{dt}{dx}=-\sqrt{2}\dfrac{1}{2}(-\sin \dfrac{x}{2}) \\
& \dfrac{dt}{dx}=-\dfrac{1}{\sqrt{2}}\left( \sin \dfrac{x}{2} \right) \\
\end{align}\]
\[\Rightarrow -\sqrt{2}.dt=\left( \sin \dfrac{x}{2} \right)dx\] ………………..(10)
From equation (6), equation (7), and equation (10), we get
\[=\int{\sqrt{\dfrac{1}{2{{\cos }^{2}}\dfrac{x}{2}-1}}\times \sqrt{2}\left( \sin \dfrac{x}{2} \right)dx}\]
\[=\int{\sqrt{\dfrac{1}{{{t}^{2}}-1}}\times \sqrt{2}\left( -\sqrt{2} \right)dt}\]
\[=-2\int{\sqrt{\dfrac{1}{{{t}^{2}}-1}}dt}\] ………………………….(11)
We know the formula, \[\int{\sqrt{\dfrac{1}{{{t}^{2}}-1}}dt=\left[ \ln \left[ \sqrt{{{t}^{2}}-1}+t \right] \right]}+C\] .
Now, using this formula and simplifying equation (11), we get
\[=-2\int{\sqrt{\dfrac{1}{{{t}^{2}}-1}}dt}\]
\[=(-2)\left[ \ln \left[ \sqrt{{{t}^{2}}-1}+t \right] \right]+C\] ………………..(12)
From equation (7), we have \[t=\sqrt{2}cos\dfrac{x}{2}\] .
Now, using equation (7) and transforming equation (12), we get
\[\begin{align}
& =\left( -2 \right)\left[ \ln \left[ \sqrt{{{\left( \sqrt{2}\cos \dfrac{x}{2} \right)}^{2}}-1}+t \right] \right]+C \\
& =\left( -2 \right)\left[ \ln \left[ \sqrt{2{{\cos }^{2}}\dfrac{x}{2}-1}+\sqrt{2}cos\dfrac{x}{2} \right] \right]+C \\
\end{align}\]
\[=\left( -2 \right)\left[ \ln \left[ \sqrt{2}\times \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right) \right] \right]+C\] ……………………….(13)
We know the formula, \[\ln (pqr)=ln(p)+ln(qr)\] .
Using this formula in equation (13), we get
\[=-2\ln \sqrt{2}-2\ln \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right)+C\]
\[\begin{align}
& ={{C}_{1}}-2\ln \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right)+C \\
& =-2\ln \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right)+C+{{C}_{1}} \\
& =-2\ln \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right)+A \\
\end{align}\]
Here, A is a constant.
Hence, the value of \[\int{\sqrt{\sec x-1}dx}\] is \[-2\ln \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right)+A\] .
Note: To solve this question, one might think to take \[\cos x\] equal to t in \[\int{\sqrt{\left( \dfrac{1-\cos x}{\cos x} \right)dx}}\] . If we do so then, we will not be able to transform it into a simpler form.
\[\cos x=t\] ………………….(1)
We know the identity, \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\] . Using this identity to find the value of \[\sin x\] .
\[\sin x=\sqrt{1-{{\cos }^{2}}x}=\sqrt{1-{{t}^{2}}}=\sqrt{1-t}.\sqrt{1+t}\] ………………..(2)
On differentiating equation (1), we get
\[\Rightarrow \dfrac{d(\cos x)}{dx}=\dfrac{dt}{dx}\]
\[\Rightarrow dx=\dfrac{-dt}{\sin x}\] ……………………(3)
Using equation (1), equation (2), and equation (3), transforming \[\int{\sqrt{\left( \dfrac{1-\cos x}{\cos x} \right)dx}}\] , we get
\[\int{\left( \dfrac{\sqrt{1-t}}{t} \right)\left( \dfrac{-dt}{\sin x} \right)}\]
\[=\int{\left( \dfrac{\sqrt{1-t}}{t} \right)\left( \dfrac{-dt}{\sqrt{1-t}.\sqrt{1+t}} \right)}\]
The above equation is complex to be solved. Therefore, we should not approach this question by this method.
\[\cos 2x=2{{\cos }^{2}}x-1\] and \[\cos 2x=1-2si{{n}^{2}}x\Rightarrow 2si{{n}^{2}}x=1-\cos 2x\] .Then, replace x by \[\dfrac{x}{2}\]
in these two formulas. Use these two formulas and transform \[\int{\sqrt{\dfrac{1-\cos x}{\cos x}}dx}\] . Now, assume \[t=\sqrt{2}cos\dfrac{x}{2}\] and transform the equation \[\int{\sqrt{\dfrac{1}{2{{\cos }^{2}}\dfrac{x}{2}-1}}\times \sqrt{2}\sin \dfrac{x}{2}dx}\] . We know the formula \[\dfrac{d\left( \cos ax \right)}{dx}=\dfrac{1}{a}\left( -\sin ax \right)\] and
\[\int{\sqrt{\dfrac{1}{{{t}^{2}}-1}}dt=\left[ \ln \left[ \sqrt{{{t}^{2}}-1}+t \right] \right]}+C\] . Use these formulas and solve it further.
Complete step-by-step answer:
According to the question, we have to integrate,
\[\int{\sqrt{\sec x-1}dx}\] ……………….(1)
We know that cosine function is reciprocal of sec function.
\[\sec x=\dfrac{1}{\cos x}\] …………………..(2)
Putting the value of \[\sec x\] from equation (2) in equation (1), we get
\[\int{\sqrt{\sec x-1}dx}\]
\[=\int{\sqrt{\dfrac{1}{\cos x}-1}dx}\]
\[=\int{\sqrt{\dfrac{1-\cos x}{\cos x}}dx}\] ……………………(3)
We know the formula, \[\cos 2x=2{{\cos }^{2}}x-1\] .
Replacing x by \[\dfrac{x}{2}\] in the above formula, we get
\[\cos 2.\dfrac{x}{2}=2{{\cos }^{2}}\dfrac{x}{2}-1\]
\[\Rightarrow \cos x=2{{\cos }^{2}}\dfrac{x}{2}-1\] ………………………(4)
We know the formula, \[\cos 2x=1-2si{{n}^{2}}x\] .
Replacing x by \[\dfrac{x}{2}\] in the above formula, we get
\[\cos 2.\dfrac{x}{2}=1-2si{{n}^{2}}\dfrac{x}{2}\]
\[\Rightarrow \cos x=1-2si{{n}^{2}}\dfrac{x}{2}\]
\[\Rightarrow 2si{{n}^{2}}\dfrac{x}{2}=1-\cos x\] ………………………(5)
Now, from equation (3), equation (4), and equation (5), we get
\[=\int{\sqrt{\dfrac{1-\cos x}{\cos x}}dx}\]
\[=\int{\sqrt{\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}-1}}dx}\]
\[=\int{\sqrt{\dfrac{1}{2{{\cos }^{2}}\dfrac{x}{2}-1}}\times \sqrt{2}\sin \dfrac{x}{2}dx}\] ………………..(6)
Let us assume, \[t=\sqrt{2}cos\dfrac{x}{2}\] ……………………..(7)
Differentiating with respect to x in equation (7), we get
\[\dfrac{dt}{dx}=\dfrac{d\left( \sqrt{2}cos\dfrac{x}{2} \right)}{dx}\]
\[\dfrac{dt}{dx}=\sqrt{2}\dfrac{d\left( \cos \dfrac{x}{2} \right)}{dx}\] ……………………….(8)
We know the formula, \[\dfrac{d\left( \cos ax \right)}{dx}=\dfrac{1}{a}\left( -\sin ax \right)\] .
Replacing x by \[\dfrac{x}{2}\] and a by \[\dfrac{1}{2}\] in the above formula, we get
\[\dfrac{d\left( \cos \dfrac{x}{2} \right)}{dx}=\dfrac{1}{2}\left( -\sin \dfrac{x}{2} \right)\] ……………………(9)
Now, from equation (8) and equation (9), we get
\[\dfrac{dt}{dx}=\sqrt{2}\dfrac{d\left( \cos \dfrac{x}{2} \right)}{dx}\]
\[\begin{align}
& \dfrac{dt}{dx}=-\sqrt{2}\dfrac{1}{2}(-\sin \dfrac{x}{2}) \\
& \dfrac{dt}{dx}=-\dfrac{1}{\sqrt{2}}\left( \sin \dfrac{x}{2} \right) \\
\end{align}\]
\[\Rightarrow -\sqrt{2}.dt=\left( \sin \dfrac{x}{2} \right)dx\] ………………..(10)
From equation (6), equation (7), and equation (10), we get
\[=\int{\sqrt{\dfrac{1}{2{{\cos }^{2}}\dfrac{x}{2}-1}}\times \sqrt{2}\left( \sin \dfrac{x}{2} \right)dx}\]
\[=\int{\sqrt{\dfrac{1}{{{t}^{2}}-1}}\times \sqrt{2}\left( -\sqrt{2} \right)dt}\]
\[=-2\int{\sqrt{\dfrac{1}{{{t}^{2}}-1}}dt}\] ………………………….(11)
We know the formula, \[\int{\sqrt{\dfrac{1}{{{t}^{2}}-1}}dt=\left[ \ln \left[ \sqrt{{{t}^{2}}-1}+t \right] \right]}+C\] .
Now, using this formula and simplifying equation (11), we get
\[=-2\int{\sqrt{\dfrac{1}{{{t}^{2}}-1}}dt}\]
\[=(-2)\left[ \ln \left[ \sqrt{{{t}^{2}}-1}+t \right] \right]+C\] ………………..(12)
From equation (7), we have \[t=\sqrt{2}cos\dfrac{x}{2}\] .
Now, using equation (7) and transforming equation (12), we get
\[\begin{align}
& =\left( -2 \right)\left[ \ln \left[ \sqrt{{{\left( \sqrt{2}\cos \dfrac{x}{2} \right)}^{2}}-1}+t \right] \right]+C \\
& =\left( -2 \right)\left[ \ln \left[ \sqrt{2{{\cos }^{2}}\dfrac{x}{2}-1}+\sqrt{2}cos\dfrac{x}{2} \right] \right]+C \\
\end{align}\]
\[=\left( -2 \right)\left[ \ln \left[ \sqrt{2}\times \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right) \right] \right]+C\] ……………………….(13)
We know the formula, \[\ln (pqr)=ln(p)+ln(qr)\] .
Using this formula in equation (13), we get
\[=-2\ln \sqrt{2}-2\ln \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right)+C\]
\[\begin{align}
& ={{C}_{1}}-2\ln \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right)+C \\
& =-2\ln \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right)+C+{{C}_{1}} \\
& =-2\ln \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right)+A \\
\end{align}\]
Here, A is a constant.
Hence, the value of \[\int{\sqrt{\sec x-1}dx}\] is \[-2\ln \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right)+A\] .
Note: To solve this question, one might think to take \[\cos x\] equal to t in \[\int{\sqrt{\left( \dfrac{1-\cos x}{\cos x} \right)dx}}\] . If we do so then, we will not be able to transform it into a simpler form.
\[\cos x=t\] ………………….(1)
We know the identity, \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\] . Using this identity to find the value of \[\sin x\] .
\[\sin x=\sqrt{1-{{\cos }^{2}}x}=\sqrt{1-{{t}^{2}}}=\sqrt{1-t}.\sqrt{1+t}\] ………………..(2)
On differentiating equation (1), we get
\[\Rightarrow \dfrac{d(\cos x)}{dx}=\dfrac{dt}{dx}\]
\[\Rightarrow dx=\dfrac{-dt}{\sin x}\] ……………………(3)
Using equation (1), equation (2), and equation (3), transforming \[\int{\sqrt{\left( \dfrac{1-\cos x}{\cos x} \right)dx}}\] , we get
\[\int{\left( \dfrac{\sqrt{1-t}}{t} \right)\left( \dfrac{-dt}{\sin x} \right)}\]
\[=\int{\left( \dfrac{\sqrt{1-t}}{t} \right)\left( \dfrac{-dt}{\sqrt{1-t}.\sqrt{1+t}} \right)}\]
The above equation is complex to be solved. Therefore, we should not approach this question by this method.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

