
The value of \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{x\sin x\cos x}}{{{{\sin }^4}x + {{\cos }^4}x}}} \,dx\] is
A. \[\dfrac{{{\pi ^2}}}{4}\]
B. \[\dfrac{{{\pi ^2}}}{8}\]
C. \[\dfrac{{{\pi ^2}}}{{32}}\]
D. \[\dfrac{{3{\pi ^2}}}{{16}}\]
Answer
543.9k+ views
Hint: Here the question is related to the integration. The integral is of the form of definite integral where the limit points are mentioned. The function for the integration is trigonometric function to integrate the function we solve by the substitution method. Hence we obtain the required solution for the given question.
Complete step by step solution:
Now consider the given integral as I
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{x\sin x\cos x}}{{{{\sin }^4}x + {{\cos }^4}x}}} \,dx\] ---------- (1)
Now replace the x by \[\left( {\dfrac{\pi }{2} - x} \right)\]
So it can be written as
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\left( {\dfrac{\pi }{2} - x} \right)\sin \left( {\dfrac{\pi }{2} - x} \right)\cos \left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} - x} \right)}}} \,dx\]
As we know that \[\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x\] and \[\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x\]
Therefore the above equation can be written as
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\left( {\dfrac{\pi }{2} - x} \right)\cos x\sin x}}{{{{\cos }^4}x + {{\sin }^4}x}}} \,dx\] ------ (2)
On adding the equation (1) and (2) we get \[ \Rightarrow 2I = \dfrac{\pi }{2}\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\cos x\sin x}}{{{{\cos }^4}x + {{\sin }^4}x}}} \,dx\]
Put \[{\sin ^2}x = t\] , on differentiating this function we get \[2\sin x\cos xdx = dt\] . When the function changes the limit points will also change
When x = 0 then t = 0 and when \[x = \dfrac{\pi }{2}\] then t = 1
Therefore the above equation can be written as
\[ \Rightarrow 2I = \dfrac{\pi }{2} \times \dfrac{1}{2}\int\limits_0^1 {\dfrac{{dt}}{{{{(1 - t)}^2} + {t^2}}}} \,\]
On simplifying we get
\[ \Rightarrow 2I = \dfrac{\pi }{4}\int\limits_0^1 {\dfrac{{dt}}{{1 + {t^2} - 2t + {t^2}}}} \,\]
Take 2 to RHS we get
\[ \Rightarrow I = \dfrac{\pi }{8}\int\limits_0^1 {\dfrac{{dt}}{{1 + 2{t^2} - 2t}}} \,\]
Simplify the denominator
\[ \Rightarrow I = \dfrac{\pi }{{16}}\int\limits_0^1 {\dfrac{{dt}}{{\dfrac{1}{2} + {t^2} - t}}} \,\]
The denominator term can be replaced by \[{\left( {t - \dfrac{1}{2}} \right)^2} + \dfrac{1}{4}\] , so the equation or integral can be written as
\[ \Rightarrow I = \dfrac{\pi }{{16}}\int\limits_0^1 {\dfrac{{dt}}{{{{\left( {t - \dfrac{1}{2}} \right)}^2} + \dfrac{1}{4}}}} \,\]
On applying integration we have
\[\left. { \Rightarrow I = \dfrac{\pi }{{16}} \times \dfrac{1}{{\dfrac{1}{2}}}{{\tan }^{ - 1}}\left( {\dfrac{{t - \dfrac{1}{2}}}{{\dfrac{1}{2}}}} \right)} \right|_0^1\]
Apply the limit points we get
\[ \Rightarrow I = \dfrac{\pi }{{16}} \times \dfrac{1}{{\dfrac{1}{2}}}{\tan ^{ - 1}}\left( {\dfrac{{(1 - 0) - \dfrac{1}{2}}}{{\dfrac{1}{2}}}} \right)\]
On simplifying we get
\[ \Rightarrow I = \dfrac{\pi }{8}{\tan ^{ - 1}}\left( {\dfrac{{1 - \dfrac{1}{2}}}{{\dfrac{1}{2}}}} \right)\]
\[ \Rightarrow I = \dfrac{\pi }{8}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{2}}}{{\dfrac{1}{2}}}} \right)\]
Since the numerator and the denominator is same we cancel them
\[ \Rightarrow I = \dfrac{\pi }{8}{\tan ^{ - 1}}\left( 1 \right)\]
The value of \[{\tan ^{ - 1}}\left( 1 \right) = \dfrac{\pi }{4}\] , therefore we get
\[ \Rightarrow I = \dfrac{\pi }{8} \times \dfrac{\pi }{4}\]
On simplification
\[ \Rightarrow I = \dfrac{{{\pi ^2}}}{{32}}\]
Hence we have obtained the solution
The option C is the correct one
So, the correct answer is “Option C”.
Note: By simplifying the question using the substitution we can integrate the given function easily. If we apply integration directly it may be complicated to solve further. So, simplification is needed. We must know the differentiation and integration formulas. The standard integration formulas for the trigonometric ratios must know.
Complete step by step solution:
Now consider the given integral as I
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{x\sin x\cos x}}{{{{\sin }^4}x + {{\cos }^4}x}}} \,dx\] ---------- (1)
Now replace the x by \[\left( {\dfrac{\pi }{2} - x} \right)\]
So it can be written as
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\left( {\dfrac{\pi }{2} - x} \right)\sin \left( {\dfrac{\pi }{2} - x} \right)\cos \left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} - x} \right)}}} \,dx\]
As we know that \[\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x\] and \[\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x\]
Therefore the above equation can be written as
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\left( {\dfrac{\pi }{2} - x} \right)\cos x\sin x}}{{{{\cos }^4}x + {{\sin }^4}x}}} \,dx\] ------ (2)
On adding the equation (1) and (2) we get \[ \Rightarrow 2I = \dfrac{\pi }{2}\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\cos x\sin x}}{{{{\cos }^4}x + {{\sin }^4}x}}} \,dx\]
Put \[{\sin ^2}x = t\] , on differentiating this function we get \[2\sin x\cos xdx = dt\] . When the function changes the limit points will also change
When x = 0 then t = 0 and when \[x = \dfrac{\pi }{2}\] then t = 1
Therefore the above equation can be written as
\[ \Rightarrow 2I = \dfrac{\pi }{2} \times \dfrac{1}{2}\int\limits_0^1 {\dfrac{{dt}}{{{{(1 - t)}^2} + {t^2}}}} \,\]
On simplifying we get
\[ \Rightarrow 2I = \dfrac{\pi }{4}\int\limits_0^1 {\dfrac{{dt}}{{1 + {t^2} - 2t + {t^2}}}} \,\]
Take 2 to RHS we get
\[ \Rightarrow I = \dfrac{\pi }{8}\int\limits_0^1 {\dfrac{{dt}}{{1 + 2{t^2} - 2t}}} \,\]
Simplify the denominator
\[ \Rightarrow I = \dfrac{\pi }{{16}}\int\limits_0^1 {\dfrac{{dt}}{{\dfrac{1}{2} + {t^2} - t}}} \,\]
The denominator term can be replaced by \[{\left( {t - \dfrac{1}{2}} \right)^2} + \dfrac{1}{4}\] , so the equation or integral can be written as
\[ \Rightarrow I = \dfrac{\pi }{{16}}\int\limits_0^1 {\dfrac{{dt}}{{{{\left( {t - \dfrac{1}{2}} \right)}^2} + \dfrac{1}{4}}}} \,\]
On applying integration we have
\[\left. { \Rightarrow I = \dfrac{\pi }{{16}} \times \dfrac{1}{{\dfrac{1}{2}}}{{\tan }^{ - 1}}\left( {\dfrac{{t - \dfrac{1}{2}}}{{\dfrac{1}{2}}}} \right)} \right|_0^1\]
Apply the limit points we get
\[ \Rightarrow I = \dfrac{\pi }{{16}} \times \dfrac{1}{{\dfrac{1}{2}}}{\tan ^{ - 1}}\left( {\dfrac{{(1 - 0) - \dfrac{1}{2}}}{{\dfrac{1}{2}}}} \right)\]
On simplifying we get
\[ \Rightarrow I = \dfrac{\pi }{8}{\tan ^{ - 1}}\left( {\dfrac{{1 - \dfrac{1}{2}}}{{\dfrac{1}{2}}}} \right)\]
\[ \Rightarrow I = \dfrac{\pi }{8}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{2}}}{{\dfrac{1}{2}}}} \right)\]
Since the numerator and the denominator is same we cancel them
\[ \Rightarrow I = \dfrac{\pi }{8}{\tan ^{ - 1}}\left( 1 \right)\]
The value of \[{\tan ^{ - 1}}\left( 1 \right) = \dfrac{\pi }{4}\] , therefore we get
\[ \Rightarrow I = \dfrac{\pi }{8} \times \dfrac{\pi }{4}\]
On simplification
\[ \Rightarrow I = \dfrac{{{\pi ^2}}}{{32}}\]
Hence we have obtained the solution
The option C is the correct one
So, the correct answer is “Option C”.
Note: By simplifying the question using the substitution we can integrate the given function easily. If we apply integration directly it may be complicated to solve further. So, simplification is needed. We must know the differentiation and integration formulas. The standard integration formulas for the trigonometric ratios must know.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

