
The value of $\int\limits_{0}^{1}{\left| \sin (2\pi x) \right|dx}$ is equal to
A. 0
B. $\dfrac{-1}{\pi }$
C. $\dfrac{1}{\pi }$
D. $\dfrac{2}{\pi }$
Answer
602.1k+ views
Hint: According to definition of absolute value function $f(x)=\left| x \right|$ we can write
$f(x)=x$ when $x\ge 0$
$f(x)=-x$ when $x<0$
And also we can use$\int{\sin (x)dx=-\cos (x)}$
Complete step-by-step answer:
Given integral is $\int\limits_{0}^{1}{\left| \sin (2\pi x) \right|dx}$
For \[0\le x\le \dfrac{1}{2}\] , \[\sin (2\pi x)>0\]
For \[\dfrac{1}{2}\le x\le 1\], \[\sin (2\pi x)<0\]
Hence we can write integral as
$\int\limits_{0}^{1}{\sin (2\pi x)dx=\int\limits_{0}^{{}^{1}/{}_{2}}{\sin (2\pi x)dx}}+\int\limits_{{}^{1}/{}_{2}}^{1}{-\sin (2\pi x)dx}$
Now calculate $\int{\sin (2\pi x)dx}$
Let $2\pi x=t$
On differentiating
$2\pi dx=dt$
$dx=\dfrac{dt}{2\pi }$
Hence integral is
$\Rightarrow \int{\sin (2\pi x)dx}=\dfrac{1}{2\pi }\int{\sin (t)dt}$
$\Rightarrow \int{\sin (2\pi x)dx}=\dfrac{-\cos (t)}{2\pi }$
On substituting $2\pi x=t$
$\Rightarrow \int{\sin (2\pi x)dx}=\dfrac{-\cos (2\pi x)}{2\pi }$
As we have $\int\limits_{0}^{1}{\sin (2\pi x)dx=\int\limits_{0}^{{}^{1}/{}_{2}}{\sin (2\pi x)dx}}+\int\limits_{{}^{1}/{}_{2}}^{1}{-\sin (2\pi x)dx}$
After substituting value of $\int{\sin (2\pi x)dx}$
\[\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\left[ \dfrac{-\cos (2\pi x)}{2\pi } \right]_{0}^{{}^{1}/{}_{2}}}+\left[ \dfrac{\cos (2\pi x)}{2\pi } \right]_{{}^{1}/{}_{2}}^{1}\]
\[\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\left[ \dfrac{-\cos (\pi )}{2\pi }+\dfrac{\cos (0)}{2\pi } \right]}+\left[ \dfrac{\cos (2\pi )}{2\pi }-\dfrac{\cos (\pi )}{2\pi } \right]\]
\[\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\left[ \dfrac{-(-1)}{2\pi }+\dfrac{1}{2\pi } \right]}+\left[ \dfrac{1}{2\pi }-\dfrac{(-1)}{2\pi } \right]\].
\[\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\left[ \dfrac{1}{2\pi }+\dfrac{1}{2\pi } \right]}+\left[ \dfrac{1}{2\pi }+\dfrac{1}{2\pi } \right]\]
\[\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\dfrac{2}{2\pi }+}\dfrac{2}{2\pi }\]
\[\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\dfrac{4}{2\pi }}\]
\[\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\dfrac{2}{\pi }}\]
Hence option D is correct.
Note: In above question we need to classify range of x very carefully.
We can understand it from graph of sin(x) as below:
As from 0 to $\pi $ , sin(x) is positive and from $\pi $ to $2\pi $
That’s we classify range as below:
For \[0\le x\le \dfrac{1}{2}\] , \[\sin (2\pi x)>0\]
$f(x)=x$ when $x\ge 0$
$f(x)=-x$ when $x<0$
And also we can use$\int{\sin (x)dx=-\cos (x)}$
Complete step-by-step answer:
Given integral is $\int\limits_{0}^{1}{\left| \sin (2\pi x) \right|dx}$
For \[0\le x\le \dfrac{1}{2}\] , \[\sin (2\pi x)>0\]
For \[\dfrac{1}{2}\le x\le 1\], \[\sin (2\pi x)<0\]
Hence we can write integral as
$\int\limits_{0}^{1}{\sin (2\pi x)dx=\int\limits_{0}^{{}^{1}/{}_{2}}{\sin (2\pi x)dx}}+\int\limits_{{}^{1}/{}_{2}}^{1}{-\sin (2\pi x)dx}$
Now calculate $\int{\sin (2\pi x)dx}$
Let $2\pi x=t$
On differentiating
$2\pi dx=dt$
$dx=\dfrac{dt}{2\pi }$
Hence integral is
$\Rightarrow \int{\sin (2\pi x)dx}=\dfrac{1}{2\pi }\int{\sin (t)dt}$
$\Rightarrow \int{\sin (2\pi x)dx}=\dfrac{-\cos (t)}{2\pi }$
On substituting $2\pi x=t$
$\Rightarrow \int{\sin (2\pi x)dx}=\dfrac{-\cos (2\pi x)}{2\pi }$
As we have $\int\limits_{0}^{1}{\sin (2\pi x)dx=\int\limits_{0}^{{}^{1}/{}_{2}}{\sin (2\pi x)dx}}+\int\limits_{{}^{1}/{}_{2}}^{1}{-\sin (2\pi x)dx}$
After substituting value of $\int{\sin (2\pi x)dx}$
\[\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\left[ \dfrac{-\cos (2\pi x)}{2\pi } \right]_{0}^{{}^{1}/{}_{2}}}+\left[ \dfrac{\cos (2\pi x)}{2\pi } \right]_{{}^{1}/{}_{2}}^{1}\]
\[\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\left[ \dfrac{-\cos (\pi )}{2\pi }+\dfrac{\cos (0)}{2\pi } \right]}+\left[ \dfrac{\cos (2\pi )}{2\pi }-\dfrac{\cos (\pi )}{2\pi } \right]\]
\[\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\left[ \dfrac{-(-1)}{2\pi }+\dfrac{1}{2\pi } \right]}+\left[ \dfrac{1}{2\pi }-\dfrac{(-1)}{2\pi } \right]\].
\[\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\left[ \dfrac{1}{2\pi }+\dfrac{1}{2\pi } \right]}+\left[ \dfrac{1}{2\pi }+\dfrac{1}{2\pi } \right]\]
\[\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\dfrac{2}{2\pi }+}\dfrac{2}{2\pi }\]
\[\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\dfrac{4}{2\pi }}\]
\[\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\dfrac{2}{\pi }}\]
Hence option D is correct.
Note: In above question we need to classify range of x very carefully.
We can understand it from graph of sin(x) as below:
As from 0 to $\pi $ , sin(x) is positive and from $\pi $ to $2\pi $
That’s we classify range as below:
For \[0\le x\le \dfrac{1}{2}\] , \[\sin (2\pi x)>0\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

