
The value of $\int\limits_{ - \pi }^\pi {\dfrac{{{{\cos }^2}x}}{{1 + {a^x}}}dx,a > 0} $ is
(a) $2\pi $
(b) $\dfrac{\pi }{a}$
(c) $\dfrac{\pi }{2}$
(d) $a\pi $
Answer
615.3k+ views
Hint: Here we have to use definite integral properties and trigonometry identities to solve the given integral.
Complete step-by-step answer:
Let \[I = \int\limits_{ - \pi }^\pi {\dfrac{{{{\cos }^2}x}}{{1 + {a^x}}}dx} \] ...... (1)
Now we know from the properties of definite integral that $\int\limits_{ - a}^a {f\left( x \right)} dx = \int\limits_{ - a}^a {f\left( { - a + a - x} \right)} dx$
Applying this, we get
\[I = \int\limits_{ - \pi }^\pi {\dfrac{{{{\cos }^2}\left( { - \pi + \pi - x} \right)}}{{1 + {a^{ - \pi + \pi - x}}}}dx} \]
\[I = \int\limits_{ - \pi }^\pi {\dfrac{{{{\cos }^2}\left( { - x} \right)}}{{1 + {a^{ - x}}}}dx} \]
As you know $\cos \left( { - \theta } \right) = \cos \theta $
\[ \Rightarrow I = \int\limits_{ - \pi }^\pi {\dfrac{{{{\cos }^2}\left( x \right)}}{{1 + {a^{ - x}}}}dx} \]
\[ \Rightarrow I = \int\limits_{ - \pi }^\pi {\dfrac{{{{\cos }^2}\left( x \right)}}{{1 + \dfrac{1}{{{a^x}}}}}dx} \]
\[ \Rightarrow I = \int\limits_{ - \pi }^\pi {\dfrac{{{a^x}{{\cos }^2}\left( x \right)}}{{1 + {a^x}}}dx} \] …… (2)
Now add equation (1) and (2)
\[ \Rightarrow 2I = \int\limits_{ - \pi }^\pi {\dfrac{{{{\cos }^2}x}}{{1 + {a^x}}}dx} + \int\limits_{ - \pi }^\pi {\dfrac{{{a^x}{{\cos }^2}\left( x \right)}}{{1 + {a^x}}}dx} \]
\[ \Rightarrow 2I = \int\limits_{ - \pi }^\pi {\dfrac{{\left( {1 + {a^x}} \right){{\cos }^2}\left( x \right)}}{{1 + {a^x}}}dx} = \int\limits_{ - \pi }^\pi {{{\cos }^2}\left( x \right)dx} \]
Now you know ${\cos ^2}x$ is written as $\left( {\dfrac{{1 + \cos 2x}}{2}} \right)$
$2I = \int\limits_{ - \pi }^\pi {\left( {\dfrac{{1 + \cos 2x}}{2}} \right)dx} $
Now for even functions
$ \Rightarrow I = \int\limits_{ - a}^a {f\left( x \right)dx = 2\int\limits_0^a {f\left( x \right)dx} } $
Now you know that cos is even function so, this integral is written as
$2I = 2\int\limits_0^\pi {\left( {\dfrac{{1 + \cos 2x}}{2}} \right)dx} $
\[I = \dfrac{1}{2}\int\limits_0^\pi {\left( {1 + \cos 2x} \right)dx} \]
Now apply the integral
\[ \Rightarrow I = \dfrac{1}{2}\left[ {x + \dfrac{{\sin 2x}}{2}} \right]_0^\pi \]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\pi + \dfrac{{\sin 2\pi }}{2} - 0 - \dfrac{{\sin 0}}{2}} \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\pi + \dfrac{0}{2} - 0 - \dfrac{0}{2}} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\]
So option C is correct.
Note: Always remember integral properties. It will help you a lot in solving the integration problems. Also, be careful with signs. Converting higher power trigonometric functions to lower power is always advisable to ease the solving process.
Complete step-by-step answer:
Let \[I = \int\limits_{ - \pi }^\pi {\dfrac{{{{\cos }^2}x}}{{1 + {a^x}}}dx} \] ...... (1)
Now we know from the properties of definite integral that $\int\limits_{ - a}^a {f\left( x \right)} dx = \int\limits_{ - a}^a {f\left( { - a + a - x} \right)} dx$
Applying this, we get
\[I = \int\limits_{ - \pi }^\pi {\dfrac{{{{\cos }^2}\left( { - \pi + \pi - x} \right)}}{{1 + {a^{ - \pi + \pi - x}}}}dx} \]
\[I = \int\limits_{ - \pi }^\pi {\dfrac{{{{\cos }^2}\left( { - x} \right)}}{{1 + {a^{ - x}}}}dx} \]
As you know $\cos \left( { - \theta } \right) = \cos \theta $
\[ \Rightarrow I = \int\limits_{ - \pi }^\pi {\dfrac{{{{\cos }^2}\left( x \right)}}{{1 + {a^{ - x}}}}dx} \]
\[ \Rightarrow I = \int\limits_{ - \pi }^\pi {\dfrac{{{{\cos }^2}\left( x \right)}}{{1 + \dfrac{1}{{{a^x}}}}}dx} \]
\[ \Rightarrow I = \int\limits_{ - \pi }^\pi {\dfrac{{{a^x}{{\cos }^2}\left( x \right)}}{{1 + {a^x}}}dx} \] …… (2)
Now add equation (1) and (2)
\[ \Rightarrow 2I = \int\limits_{ - \pi }^\pi {\dfrac{{{{\cos }^2}x}}{{1 + {a^x}}}dx} + \int\limits_{ - \pi }^\pi {\dfrac{{{a^x}{{\cos }^2}\left( x \right)}}{{1 + {a^x}}}dx} \]
\[ \Rightarrow 2I = \int\limits_{ - \pi }^\pi {\dfrac{{\left( {1 + {a^x}} \right){{\cos }^2}\left( x \right)}}{{1 + {a^x}}}dx} = \int\limits_{ - \pi }^\pi {{{\cos }^2}\left( x \right)dx} \]
Now you know ${\cos ^2}x$ is written as $\left( {\dfrac{{1 + \cos 2x}}{2}} \right)$
$2I = \int\limits_{ - \pi }^\pi {\left( {\dfrac{{1 + \cos 2x}}{2}} \right)dx} $
Now for even functions
$ \Rightarrow I = \int\limits_{ - a}^a {f\left( x \right)dx = 2\int\limits_0^a {f\left( x \right)dx} } $
Now you know that cos is even function so, this integral is written as
$2I = 2\int\limits_0^\pi {\left( {\dfrac{{1 + \cos 2x}}{2}} \right)dx} $
\[I = \dfrac{1}{2}\int\limits_0^\pi {\left( {1 + \cos 2x} \right)dx} \]
Now apply the integral
\[ \Rightarrow I = \dfrac{1}{2}\left[ {x + \dfrac{{\sin 2x}}{2}} \right]_0^\pi \]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\pi + \dfrac{{\sin 2\pi }}{2} - 0 - \dfrac{{\sin 0}}{2}} \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\pi + \dfrac{0}{2} - 0 - \dfrac{0}{2}} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\]
So option C is correct.
Note: Always remember integral properties. It will help you a lot in solving the integration problems. Also, be careful with signs. Converting higher power trigonometric functions to lower power is always advisable to ease the solving process.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

