
The value of $\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}x}}{{1 + {2^x}}}dx} $ is
A) $4\pi $
B) $\dfrac{\pi }{4}$
C) $\dfrac{\pi }{8}$
D) $\dfrac{\pi }{2}$
Answer
580.8k+ views
Hint: If $I$ is given as $I = \int\limits_a^b {f\left( x \right)dx} $, then $x$ can be replaced by $a + b - x$, then the value of $I$ remains unchanged. So, $I = \int\limits_a^b {f\left( {a + b - x} \right)dx} $.
Then add both, we will get our value.
Complete step-by-step answer:
Let $I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}x}}{{1 + {2^x}}}dx} $.................(1)
As we know that if $I = \int\limits_a^b {f\left( x \right)dx} $, then by using king property , $I = \int\limits_a^b {f\left( {a + b - x} \right)dx} $.
So, using king property in equation (1),
$\Rightarrow$$I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2} - x} \right)}}{{1 + {2^{\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2} - x} \right)}}}}} dx$
$\Rightarrow$$I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}\left( { - x} \right)}}{{1 + {2^{ - x}}}}} dx$
As we know $\sin \left( { - x} \right) = - \sin x{\text{ , so, }}{\sin ^2}\left( { - x} \right) = {\sin ^2}x$.
$
\Rightarrow I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}\left( x \right)}}{{1 + \dfrac{1}{{{2^x}}}}}} dx \\
{\text{Now taking LCM of }}{2^x}, \\
\Rightarrow I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{2^x}{{\sin }^2}\left( x \right)}}{{{2^x} + 1}}} dx…………………….{\text{ (2)}} \\
\\
$
Now, if we add equation (1) and (2),
$
\Rightarrow I + I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\left( {\dfrac{{{2^x}{{\sin }^2}\left( x \right)}}{{{2^x} + 1}} + \dfrac{{{{\sin }^2}x}}{{1 + {2^x}}}} \right)} dx \\
\Rightarrow 2I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {{{\sin }^2}x\dfrac{{{2^x} + 1}}{{{2^x} + 1}}}
\Rightarrow 2I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {{{\sin }^2}x} dx \\
$
As we know that $\cos 2\theta = 1 - 2{\sin ^2}\theta $, so, ${\sin ^2}\theta = \dfrac{{1 - \cos 2\theta }}{2}$. Using this value we get,
$
\Rightarrow 2I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{1 - \cos 2x}}{2}dx} \\
\Rightarrow 2I = \dfrac{1}{2}\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\left( {1 - \cos 2x} \right)dx} \\
\Rightarrow 2I = \dfrac{1}{2}{\left[ {x - \dfrac{{\sin 2x}}{2}} \right]_{ - \dfrac{\pi }{2}}}^{\dfrac{\pi }{2}} \\
\Rightarrow I = \dfrac{1}{4}\left[ {\left( {\dfrac{\pi }{2} - \left( { - \dfrac{\pi }{2}} \right)} \right) - \left( {\dfrac{{\sin \pi }}{2} - \dfrac{{\sin \left( { - \pi } \right)}}{2}} \right)} \right] \\
\Rightarrow I = \dfrac{1}{4}\left[ {\pi - \sin \pi } \right] = \dfrac{\pi }{4} \\
$
(As we know $\sin n\pi = 0$ ,where $n$ is an integer)
So, value of $\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}x}}{{1 + {2^x}}}dx} $ is $\dfrac{\pi }{4}$
So, option B is the correct answer.
Note: As we know, if $f\left( x \right) = f\left( { - x} \right)$, then it is an even function and when $f\left( x \right)$ is an even function, then $\int\limits_{ - a}^a {f\left( x \right)dx = 2\int\limits_0^a {f\left( x \right)dx} } $. And if $f\left( x \right)$ is odd, means $f\left( x \right) = - f\left( { - x} \right)$, then $\int\limits_{ - a}^a {f\left( x \right)dx = 0} $.
Then add both, we will get our value.
Complete step-by-step answer:
Let $I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}x}}{{1 + {2^x}}}dx} $.................(1)
As we know that if $I = \int\limits_a^b {f\left( x \right)dx} $, then by using king property , $I = \int\limits_a^b {f\left( {a + b - x} \right)dx} $.
So, using king property in equation (1),
$\Rightarrow$$I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2} - x} \right)}}{{1 + {2^{\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2} - x} \right)}}}}} dx$
$\Rightarrow$$I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}\left( { - x} \right)}}{{1 + {2^{ - x}}}}} dx$
As we know $\sin \left( { - x} \right) = - \sin x{\text{ , so, }}{\sin ^2}\left( { - x} \right) = {\sin ^2}x$.
$
\Rightarrow I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}\left( x \right)}}{{1 + \dfrac{1}{{{2^x}}}}}} dx \\
{\text{Now taking LCM of }}{2^x}, \\
\Rightarrow I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{2^x}{{\sin }^2}\left( x \right)}}{{{2^x} + 1}}} dx…………………….{\text{ (2)}} \\
\\
$
Now, if we add equation (1) and (2),
$
\Rightarrow I + I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\left( {\dfrac{{{2^x}{{\sin }^2}\left( x \right)}}{{{2^x} + 1}} + \dfrac{{{{\sin }^2}x}}{{1 + {2^x}}}} \right)} dx \\
\Rightarrow 2I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {{{\sin }^2}x\dfrac{{{2^x} + 1}}{{{2^x} + 1}}}
\Rightarrow 2I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {{{\sin }^2}x} dx \\
$
As we know that $\cos 2\theta = 1 - 2{\sin ^2}\theta $, so, ${\sin ^2}\theta = \dfrac{{1 - \cos 2\theta }}{2}$. Using this value we get,
$
\Rightarrow 2I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{1 - \cos 2x}}{2}dx} \\
\Rightarrow 2I = \dfrac{1}{2}\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\left( {1 - \cos 2x} \right)dx} \\
\Rightarrow 2I = \dfrac{1}{2}{\left[ {x - \dfrac{{\sin 2x}}{2}} \right]_{ - \dfrac{\pi }{2}}}^{\dfrac{\pi }{2}} \\
\Rightarrow I = \dfrac{1}{4}\left[ {\left( {\dfrac{\pi }{2} - \left( { - \dfrac{\pi }{2}} \right)} \right) - \left( {\dfrac{{\sin \pi }}{2} - \dfrac{{\sin \left( { - \pi } \right)}}{2}} \right)} \right] \\
\Rightarrow I = \dfrac{1}{4}\left[ {\pi - \sin \pi } \right] = \dfrac{\pi }{4} \\
$
(As we know $\sin n\pi = 0$ ,where $n$ is an integer)
So, value of $\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}x}}{{1 + {2^x}}}dx} $ is $\dfrac{\pi }{4}$
So, option B is the correct answer.
Note: As we know, if $f\left( x \right) = f\left( { - x} \right)$, then it is an even function and when $f\left( x \right)$ is an even function, then $\int\limits_{ - a}^a {f\left( x \right)dx = 2\int\limits_0^a {f\left( x \right)dx} } $. And if $f\left( x \right)$ is odd, means $f\left( x \right) = - f\left( { - x} \right)$, then $\int\limits_{ - a}^a {f\left( x \right)dx = 0} $.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

