
The value of integral $\int {\dfrac{{d\theta }}{{{{\cos }^3}\theta \sqrt {\sin 2\theta } }}} $ can be expressed as irrational function of $\tan \theta $ as:-
A. $\dfrac{{\sqrt 2 }}{5}\left( {\sqrt {{{\tan }^2}\theta + 5} } \right)\tan \theta + c$
B. \[\dfrac{2}{5}\left( {{{\tan }^2}\theta + 5} \right)\sqrt {\tan \theta } + c\]
C. $\dfrac{{\sqrt 2 }}{5}\left( {{{\tan }^2}\theta + 5} \right)\sqrt {\tan \theta } + c$
D. $\sqrt {\dfrac{2}{5}} \left( {{{\tan }^2}\theta + 5} \right)\sqrt {\tan \theta } + c$
Answer
585.9k+ views
Hint: We will simplify the given expression using the trigonometric formulas, $\sin 2\theta = 2\sin \theta \cos \theta $, \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] and $\cos \theta = \dfrac{1}{{\sec \theta }}$. Then, substitute \[\tan \theta = t\] in the given expression. At last, integrate the simplified expression using the formula, $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c$.
Complete step-by-step answer:
We have to find the value of $\int {\dfrac{{d\theta }}{{{{\cos }^3}\theta \sqrt {\sin 2\theta } }}} $
We know that $\sin 2\theta = 2\sin \theta \cos \theta $
$\int {\dfrac{{d\theta }}{{{{\cos }^3}\theta \sqrt {2\sin \theta \cos \theta } }}} $
Multiply and divide the expression by $\cos \theta $ and simplify it further.
$
\int {\dfrac{{d\theta }}{{{{\cos }^4}\theta \dfrac{{\sqrt {2\sin \theta \cos \theta } }}{{\cos \theta }}}}} \\
\Rightarrow \int {\dfrac{{d\theta }}{{{{\cos }^4}\theta \sqrt {\dfrac{{2\sin \theta \cos \theta }}{{{{\cos }^2}\theta }}} }}} \\
\Rightarrow \int {\dfrac{{d\theta }}{{{{\cos }^4}\theta \sqrt {\dfrac{{2\sin \theta }}{{\cos \theta }}} }}} \\
$
Also, \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[ \Rightarrow \int {\dfrac{{d\theta }}{{{{\cos }^4}\theta \sqrt {2\tan \theta } }}} \]
We also know that $\cos \theta = \dfrac{1}{{\sec \theta }}$
Hence,
$
\Rightarrow \int {\dfrac{{{{\sec }^4}\theta d\theta }}{{\sqrt {2\tan \theta } }}} \\
\Rightarrow \int {\dfrac{{{{\sec }^2}\theta \left( {{{\sec }^2}\theta } \right)d\theta }}{{\sqrt {2\tan \theta } }}} \\
$
Now, ${\sec ^2}\theta = 1 - {\tan ^2}\theta $
\[\int {\dfrac{{{{\sec }^2}\theta \left( {1 - {{\tan }^2}\theta } \right)d\theta }}{{\sqrt {2\tan \theta } }}} \]
We will solve the integration by substitution. We will substitute \[\tan \theta = t\], then ${\sec ^2}\theta d\theta = dt$
$
\int {\dfrac{{\left( {1 - {t^2}} \right)dt}}{{\sqrt {2t} }}} \\
\Rightarrow \int {\left( {\dfrac{{dt}}{{\sqrt {2t} }} - \dfrac{{{t^2}dt}}{{\sqrt {2t} }}} \right)} \\
$
Now, we know that $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c$, therefore, the above integration can be simplified as,
$
\Rightarrow \dfrac{1}{{\sqrt 2 }}\left( {\dfrac{{{{\left( t \right)}^{ - \dfrac{1}{2} + 1}}}}{{\left( { - \dfrac{1}{2} + 1} \right)}} + \dfrac{{{t^{\dfrac{5}{2}}}}}{{\dfrac{5}{2}}}} \right) + c \\
\Rightarrow \dfrac{1}{{\sqrt 2 }}\left( {2\sqrt t + \dfrac{{2{t^2}\sqrt t }}{5}} \right) + c \\
$
Take $2\sqrt t $ common from the bracket,
\[\sqrt {2t} \left( {1 + \dfrac{{{t^2}}}{5}} \right) + c\]
Substitute back the value of \[t = \tan \theta \]
Hence, the value of the integration is
$
\sqrt {2\tan \theta } \left( {1 + \dfrac{{{{\tan }^2}\theta }}{5}} \right) + c \\
\Rightarrow \dfrac{{\sqrt 2 }}{5}\sqrt {\tan \theta } \left( {5 + {{\tan }^2}\theta } \right) + c \\
$
Thus, option C is correct.
Note: Students must know how to simplify expression using trigonometric identities. Also, the expression given in the question is indefinite integral. But, if the integration has upper and lower limits, then the integral is known as a definite integral.
Complete step-by-step answer:
We have to find the value of $\int {\dfrac{{d\theta }}{{{{\cos }^3}\theta \sqrt {\sin 2\theta } }}} $
We know that $\sin 2\theta = 2\sin \theta \cos \theta $
$\int {\dfrac{{d\theta }}{{{{\cos }^3}\theta \sqrt {2\sin \theta \cos \theta } }}} $
Multiply and divide the expression by $\cos \theta $ and simplify it further.
$
\int {\dfrac{{d\theta }}{{{{\cos }^4}\theta \dfrac{{\sqrt {2\sin \theta \cos \theta } }}{{\cos \theta }}}}} \\
\Rightarrow \int {\dfrac{{d\theta }}{{{{\cos }^4}\theta \sqrt {\dfrac{{2\sin \theta \cos \theta }}{{{{\cos }^2}\theta }}} }}} \\
\Rightarrow \int {\dfrac{{d\theta }}{{{{\cos }^4}\theta \sqrt {\dfrac{{2\sin \theta }}{{\cos \theta }}} }}} \\
$
Also, \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[ \Rightarrow \int {\dfrac{{d\theta }}{{{{\cos }^4}\theta \sqrt {2\tan \theta } }}} \]
We also know that $\cos \theta = \dfrac{1}{{\sec \theta }}$
Hence,
$
\Rightarrow \int {\dfrac{{{{\sec }^4}\theta d\theta }}{{\sqrt {2\tan \theta } }}} \\
\Rightarrow \int {\dfrac{{{{\sec }^2}\theta \left( {{{\sec }^2}\theta } \right)d\theta }}{{\sqrt {2\tan \theta } }}} \\
$
Now, ${\sec ^2}\theta = 1 - {\tan ^2}\theta $
\[\int {\dfrac{{{{\sec }^2}\theta \left( {1 - {{\tan }^2}\theta } \right)d\theta }}{{\sqrt {2\tan \theta } }}} \]
We will solve the integration by substitution. We will substitute \[\tan \theta = t\], then ${\sec ^2}\theta d\theta = dt$
$
\int {\dfrac{{\left( {1 - {t^2}} \right)dt}}{{\sqrt {2t} }}} \\
\Rightarrow \int {\left( {\dfrac{{dt}}{{\sqrt {2t} }} - \dfrac{{{t^2}dt}}{{\sqrt {2t} }}} \right)} \\
$
Now, we know that $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c$, therefore, the above integration can be simplified as,
$
\Rightarrow \dfrac{1}{{\sqrt 2 }}\left( {\dfrac{{{{\left( t \right)}^{ - \dfrac{1}{2} + 1}}}}{{\left( { - \dfrac{1}{2} + 1} \right)}} + \dfrac{{{t^{\dfrac{5}{2}}}}}{{\dfrac{5}{2}}}} \right) + c \\
\Rightarrow \dfrac{1}{{\sqrt 2 }}\left( {2\sqrt t + \dfrac{{2{t^2}\sqrt t }}{5}} \right) + c \\
$
Take $2\sqrt t $ common from the bracket,
\[\sqrt {2t} \left( {1 + \dfrac{{{t^2}}}{5}} \right) + c\]
Substitute back the value of \[t = \tan \theta \]
Hence, the value of the integration is
$
\sqrt {2\tan \theta } \left( {1 + \dfrac{{{{\tan }^2}\theta }}{5}} \right) + c \\
\Rightarrow \dfrac{{\sqrt 2 }}{5}\sqrt {\tan \theta } \left( {5 + {{\tan }^2}\theta } \right) + c \\
$
Thus, option C is correct.
Note: Students must know how to simplify expression using trigonometric identities. Also, the expression given in the question is indefinite integral. But, if the integration has upper and lower limits, then the integral is known as a definite integral.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

