
The value of $\int{\dfrac{dx}{x\sqrt{1-{{x}^{3}}}}}$ is equals to
(a) $\dfrac{1}{3}\ln \left| \dfrac{\sqrt{1-{{x}^{3}}}-1}{\sqrt{1-{{x}^{3}}}+1} \right|+C$
(b)$\dfrac{1}{3}\ln \left| \dfrac{\sqrt{1-{{x}^{3}}}+1}{\sqrt{1-{{x}^{3}}}-1} \right|+C$
(c)$\dfrac{1}{3}\ln \left| \dfrac{1}{\sqrt{1-{{x}^{3}}}} \right|+C$
(d)$\dfrac{1}{3}\ln \left| 1-{{x}^{3}} \right|+C$
Answer
587.1k+ views
Hint: Now, to solve this question what we will do is, we will let $\sqrt{1-{{x}^{3}}}=t$, and on differentiating on both sides and on rearranging, we will substitute values in integral I, then by using some standard integration formula, we will end up with final answer.
Complete step by step answer:
Let, $I=\int{\dfrac{dx}{x\sqrt{1-{{x}^{3}}}}}$
Now, let $\sqrt{1-{{x}^{3}}}=t$
Differentiating both side by using formula of differentiation such as $\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}$ and $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$ also, chain rule of differentiation says that if y = f(g(x)), then $\dfrac{d}{dx}(f(g(x))=f'(g(x))\cdot g'(x)$ , we get
$\dfrac{-3{{x}^{2}}}{2\sqrt{1-{{x}^{3}}}}dx=dt$ ,
Or, re – writing the terms we get
$\dfrac{1}{\sqrt{1-{{x}^{3}}}}dx=-\dfrac{2}{3{{x}^{2}}}dt$
So, substituting $\dfrac{1}{\sqrt{1-{{x}^{3}}}}dx=-\dfrac{2}{3{{x}^{2}}}dt$ in I, we get
$I=\int{-\dfrac{2}{3}\dfrac{dt}{x\cdot {{x}^{2}}}}$
Also, on rearranging terms of $\sqrt{1-{{x}^{3}}}=t$, we get${{x}^{3}}=1-{{t}^{2}}$,
Substitituting, ${{x}^{3}}=1-{{t}^{2}}$ in $I=\int{-\dfrac{2}{3}\dfrac{dt}{{{x}^{3}}}}$, we get
$I=\int{-\dfrac{2}{3}\dfrac{dt}{(1-{{t}^{2}})}}$
Or, $I=\dfrac{2}{3}\int{\dfrac{dt}{({{t}^{2}}-1)}}$
Using, algebraic identity ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$ , we can write ${{t}^{2}}-1=(t+1)(t-1)$
So, $I=\dfrac{2}{3}\int{\dfrac{dt}{(t+1)(t-1)}}$
Now, we can write $\dfrac{dt}{(t+1)(t-1)}$ as $\dfrac{dt}{(t+1)(t-1)}=\dfrac{1}{2}\left( \dfrac{1}{t-1}-\dfrac{1}{t+1} \right)dt$
Putting $\dfrac{dt}{(t+1)(t-1)}=\dfrac{1}{2}\left( \dfrac{1}{t-1}-\dfrac{1}{t+1} \right)dt$ in $I=\dfrac{2}{3}\int{\dfrac{dt}{(t+1)(t-1)}}$, we get
$I=\dfrac{2}{3}.\dfrac{1}{2}\int{\left( \dfrac{1}{t-1}-\dfrac{1}{t+1} \right)dt}$
On simplifying, we get
$I=\dfrac{1}{3}\int{\left( \dfrac{1}{t-1}-\dfrac{1}{t+1} \right)dt}$
Or, $I=\dfrac{1}{3}\left( \int{\dfrac{1}{t-1}dt-\int{\dfrac{1}{t+1}d}t} \right)$
We know that, $\int{\dfrac{1}{x+a}dx=\ln (x+a)+C}$ , where a is any real number,
So, \[\int{\dfrac{1}{t-1}dt}\] will be equals to \[\int{\dfrac{1}{t-1}dt}=\ln (t-1)+C\] and \[\int{\dfrac{1}{t+1}dt}\] will be equals to \[\int{\dfrac{1}{t+1}dt}=\ln (t+1)+C\].
Putting, values of \[\int{\dfrac{1}{t-1}dt}=\ln (t-1)+C\] and \[\int{\dfrac{1}{t+1}dt}=\ln (t+1)+C\] in $I=\dfrac{1}{3}\left( \int{\dfrac{1}{t-1}dt-\int{\dfrac{1}{t+1}d}t} \right)$, we get
$I=\dfrac{1}{3}\left( \ln (t-1)+C-\ln (t+1)+C \right)$
Now, we know that ${{\ln }_{a}}(M)-{{\ln }_{a}}(N)={{\ln }_{a}}\left( \dfrac{M}{N} \right)$
So, $\ln (t-1)-\ln (t+1)=\ln \left( \dfrac{t-1}{t+1} \right)$,
Putting, $\ln (t-1)-\ln (t+1)=\ln \left( \dfrac{t-1}{t+1} \right)$ in $I=\dfrac{1}{3}\left( \log (t-1)+C-\log (t+1)+C \right)$, we get
$I=\dfrac{1}{3}\ln \left| \dfrac{t-1}{t+1} \right|$
As, we assumed that, $\sqrt{1-{{x}^{3}}}=t$
So, substituting, value of $\sqrt{1-{{x}^{3}}}=t$, back in integral $I=\dfrac{1}{3}\ln \left| \dfrac{t-1}{t+1} \right|$, we get
$I=\dfrac{1}{3}\ln \left| \dfrac{\sqrt{1-{{x}^{3}}}-1}{\sqrt{1-{{x}^{3}}}+1} \right|+C$
So, the correct answer is “Option A”.
Note: Always remember some of the standard formula of indefinite integrals such as$\int{xdx=\dfrac{{{x}^{2}}}{2}+C}$, $\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\ln \left| \dfrac{x-a}{x+a} \right|}+C$ and $\int{\dfrac{1}{x+a}dx=\ln (x+a)+C}$ also, basics of differentiation such as $\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}$, $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$ and chain rule of differentiation which states that y = f(g(x)), then $\dfrac{d}{dx}(f(g(x))=f'(g(x))\cdot g'(x)$. Do not forget to add constants in the final answer as we are solving indefinite integral not definite integral. Try not to make calculation errors.
Complete step by step answer:
Let, $I=\int{\dfrac{dx}{x\sqrt{1-{{x}^{3}}}}}$
Now, let $\sqrt{1-{{x}^{3}}}=t$
Differentiating both side by using formula of differentiation such as $\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}$ and $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$ also, chain rule of differentiation says that if y = f(g(x)), then $\dfrac{d}{dx}(f(g(x))=f'(g(x))\cdot g'(x)$ , we get
$\dfrac{-3{{x}^{2}}}{2\sqrt{1-{{x}^{3}}}}dx=dt$ ,
Or, re – writing the terms we get
$\dfrac{1}{\sqrt{1-{{x}^{3}}}}dx=-\dfrac{2}{3{{x}^{2}}}dt$
So, substituting $\dfrac{1}{\sqrt{1-{{x}^{3}}}}dx=-\dfrac{2}{3{{x}^{2}}}dt$ in I, we get
$I=\int{-\dfrac{2}{3}\dfrac{dt}{x\cdot {{x}^{2}}}}$
Also, on rearranging terms of $\sqrt{1-{{x}^{3}}}=t$, we get${{x}^{3}}=1-{{t}^{2}}$,
Substitituting, ${{x}^{3}}=1-{{t}^{2}}$ in $I=\int{-\dfrac{2}{3}\dfrac{dt}{{{x}^{3}}}}$, we get
$I=\int{-\dfrac{2}{3}\dfrac{dt}{(1-{{t}^{2}})}}$
Or, $I=\dfrac{2}{3}\int{\dfrac{dt}{({{t}^{2}}-1)}}$
Using, algebraic identity ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$ , we can write ${{t}^{2}}-1=(t+1)(t-1)$
So, $I=\dfrac{2}{3}\int{\dfrac{dt}{(t+1)(t-1)}}$
Now, we can write $\dfrac{dt}{(t+1)(t-1)}$ as $\dfrac{dt}{(t+1)(t-1)}=\dfrac{1}{2}\left( \dfrac{1}{t-1}-\dfrac{1}{t+1} \right)dt$
Putting $\dfrac{dt}{(t+1)(t-1)}=\dfrac{1}{2}\left( \dfrac{1}{t-1}-\dfrac{1}{t+1} \right)dt$ in $I=\dfrac{2}{3}\int{\dfrac{dt}{(t+1)(t-1)}}$, we get
$I=\dfrac{2}{3}.\dfrac{1}{2}\int{\left( \dfrac{1}{t-1}-\dfrac{1}{t+1} \right)dt}$
On simplifying, we get
$I=\dfrac{1}{3}\int{\left( \dfrac{1}{t-1}-\dfrac{1}{t+1} \right)dt}$
Or, $I=\dfrac{1}{3}\left( \int{\dfrac{1}{t-1}dt-\int{\dfrac{1}{t+1}d}t} \right)$
We know that, $\int{\dfrac{1}{x+a}dx=\ln (x+a)+C}$ , where a is any real number,
So, \[\int{\dfrac{1}{t-1}dt}\] will be equals to \[\int{\dfrac{1}{t-1}dt}=\ln (t-1)+C\] and \[\int{\dfrac{1}{t+1}dt}\] will be equals to \[\int{\dfrac{1}{t+1}dt}=\ln (t+1)+C\].
Putting, values of \[\int{\dfrac{1}{t-1}dt}=\ln (t-1)+C\] and \[\int{\dfrac{1}{t+1}dt}=\ln (t+1)+C\] in $I=\dfrac{1}{3}\left( \int{\dfrac{1}{t-1}dt-\int{\dfrac{1}{t+1}d}t} \right)$, we get
$I=\dfrac{1}{3}\left( \ln (t-1)+C-\ln (t+1)+C \right)$
Now, we know that ${{\ln }_{a}}(M)-{{\ln }_{a}}(N)={{\ln }_{a}}\left( \dfrac{M}{N} \right)$
So, $\ln (t-1)-\ln (t+1)=\ln \left( \dfrac{t-1}{t+1} \right)$,
Putting, $\ln (t-1)-\ln (t+1)=\ln \left( \dfrac{t-1}{t+1} \right)$ in $I=\dfrac{1}{3}\left( \log (t-1)+C-\log (t+1)+C \right)$, we get
$I=\dfrac{1}{3}\ln \left| \dfrac{t-1}{t+1} \right|$
As, we assumed that, $\sqrt{1-{{x}^{3}}}=t$
So, substituting, value of $\sqrt{1-{{x}^{3}}}=t$, back in integral $I=\dfrac{1}{3}\ln \left| \dfrac{t-1}{t+1} \right|$, we get
$I=\dfrac{1}{3}\ln \left| \dfrac{\sqrt{1-{{x}^{3}}}-1}{\sqrt{1-{{x}^{3}}}+1} \right|+C$
So, the correct answer is “Option A”.
Note: Always remember some of the standard formula of indefinite integrals such as$\int{xdx=\dfrac{{{x}^{2}}}{2}+C}$, $\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\ln \left| \dfrac{x-a}{x+a} \right|}+C$ and $\int{\dfrac{1}{x+a}dx=\ln (x+a)+C}$ also, basics of differentiation such as $\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}$, $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$ and chain rule of differentiation which states that y = f(g(x)), then $\dfrac{d}{dx}(f(g(x))=f'(g(x))\cdot g'(x)$. Do not forget to add constants in the final answer as we are solving indefinite integral not definite integral. Try not to make calculation errors.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

How many states of matter are there in total class 12 chemistry CBSE

