
The value of $\dfrac{\sin 3\theta +\sin 5\theta +\sin 7\theta +\sin 9\theta }{\cos 3\theta +\cos 5\theta +\cos 7\theta +\cos 9\theta }$ is equal to
(a) $\tan 3\theta $
(b) $\cot 3\theta $
(c) $\tan 6\theta $
(d) $\cot 6\theta $
Answer
535.2k+ views
Hint: We should rearrange the terms and group them such that $3\theta $ term comes together with $9\theta $ , and the $5\theta $ term comes together with $7\theta $ . The advantage of this grouping is that we can get our result in a fewer number of steps. We must then use the formula $\sin C+\sin D=\dfrac{1}{2}\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ for addition of sine, and the formula $\cos C+\cos D=\dfrac{1}{2}\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ for addition of cosines. On further simplifying, we can easily get our answer.
Complete step by step solution:
Let us assume a variable $x$ such that $x=\dfrac{\sin 3\theta +\sin 5\theta +\sin 7\theta +\sin 9\theta }{\cos 3\theta +\cos 5\theta +\cos 7\theta +\cos 9\theta }$ .
We can rearrange and group the terms in numerator and denominator and write it as follows,
$x=\dfrac{\left( \sin 3\theta +\sin 9\theta \right)+\left( \sin 5\theta +\sin 7\theta \right)}{\left( \cos 3\theta +\cos 9\theta \right)+\left( \cos 5\theta +\cos 7\theta \right)}...\left( i \right)$
We know about the identity for the addition of sine, which says
$\sin C+\sin D=\dfrac{1}{2}\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
and for the addition of cosines, we have
$\cos C+\cos D=\dfrac{1}{2}\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
We should use these two identities in equation (i) to get,
$x=\dfrac{\left\{ \dfrac{1}{2}\sin \left( \dfrac{3\theta +9\theta }{2} \right)\cos \left( \dfrac{3\theta -9\theta }{2} \right) \right\}+\left\{ \dfrac{1}{2}\sin \left( \dfrac{5\theta +7\theta }{2} \right)\cos \left( \dfrac{5\theta -7\theta }{2} \right) \right\}}{\left\{ \dfrac{1}{2}\cos \left( \dfrac{3\theta +9\theta }{2} \right)\cos \left( \dfrac{3\theta -9\theta }{2} \right) \right\}+\left\{ \dfrac{1}{2}\cos \left( \dfrac{5\theta +7\theta }{2} \right)\cos \left( \dfrac{5\theta -7\theta }{2} \right) \right\}}$
Cancelling $\dfrac{1}{2}$ from each term and evaluating the equation further, we get the following simplified version,
$x=\dfrac{\sin 6\theta \cos \left( -3\theta \right)+\sin 6\theta \cos \left( -\theta \right)}{\cos 6\theta \cos \left( -3\theta \right)+\cos 6\theta \cos \left( -\theta \right)}$
We all know that for any angle,$\cos \left( -\Phi \right)=\cos \Phi $ .
We can use the above point to further simplify our equation,
$x=\dfrac{\sin 6\theta \cos 3\theta +\sin 6\theta \cos \theta }{\cos 6\theta \cos 3\theta +\cos 6\theta \cos \theta }$
Now, taking $\sin 6\theta $ as common from the numerator, and $\cos 6\theta $ as common from the denominator, we get the following
$x=\dfrac{\sin 6\theta \left( \cos 3\theta +\cos \theta \right)}{\cos 6\theta \left( \cos 3\theta +\cos \theta \right)}$
We can now cancel the term $\left( \cos 3\theta +\cos \theta \right)$ from numerator and denominator to get
$x=\dfrac{\sin 6\theta }{\cos 6\theta }$
We know that $\dfrac{\sin \Phi }{\cos \Phi }=\tan \Phi $ .
Using the above identity, we can write
$x=\tan 6\theta $
So, the correct answer is “Option c”.
Note: Some students, in eagerness, may consider the variable $\theta $ (theta) as 0 (zero). We should clearly note the difference between the two. We can solve this problem directly without rearranging the terms in the first step. But then we have to apply the formula for addition of cosines one more time, which will be a lengthy process.
Complete step by step solution:
Let us assume a variable $x$ such that $x=\dfrac{\sin 3\theta +\sin 5\theta +\sin 7\theta +\sin 9\theta }{\cos 3\theta +\cos 5\theta +\cos 7\theta +\cos 9\theta }$ .
We can rearrange and group the terms in numerator and denominator and write it as follows,
$x=\dfrac{\left( \sin 3\theta +\sin 9\theta \right)+\left( \sin 5\theta +\sin 7\theta \right)}{\left( \cos 3\theta +\cos 9\theta \right)+\left( \cos 5\theta +\cos 7\theta \right)}...\left( i \right)$
We know about the identity for the addition of sine, which says
$\sin C+\sin D=\dfrac{1}{2}\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
and for the addition of cosines, we have
$\cos C+\cos D=\dfrac{1}{2}\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
We should use these two identities in equation (i) to get,
$x=\dfrac{\left\{ \dfrac{1}{2}\sin \left( \dfrac{3\theta +9\theta }{2} \right)\cos \left( \dfrac{3\theta -9\theta }{2} \right) \right\}+\left\{ \dfrac{1}{2}\sin \left( \dfrac{5\theta +7\theta }{2} \right)\cos \left( \dfrac{5\theta -7\theta }{2} \right) \right\}}{\left\{ \dfrac{1}{2}\cos \left( \dfrac{3\theta +9\theta }{2} \right)\cos \left( \dfrac{3\theta -9\theta }{2} \right) \right\}+\left\{ \dfrac{1}{2}\cos \left( \dfrac{5\theta +7\theta }{2} \right)\cos \left( \dfrac{5\theta -7\theta }{2} \right) \right\}}$
Cancelling $\dfrac{1}{2}$ from each term and evaluating the equation further, we get the following simplified version,
$x=\dfrac{\sin 6\theta \cos \left( -3\theta \right)+\sin 6\theta \cos \left( -\theta \right)}{\cos 6\theta \cos \left( -3\theta \right)+\cos 6\theta \cos \left( -\theta \right)}$
We all know that for any angle,$\cos \left( -\Phi \right)=\cos \Phi $ .
We can use the above point to further simplify our equation,
$x=\dfrac{\sin 6\theta \cos 3\theta +\sin 6\theta \cos \theta }{\cos 6\theta \cos 3\theta +\cos 6\theta \cos \theta }$
Now, taking $\sin 6\theta $ as common from the numerator, and $\cos 6\theta $ as common from the denominator, we get the following
$x=\dfrac{\sin 6\theta \left( \cos 3\theta +\cos \theta \right)}{\cos 6\theta \left( \cos 3\theta +\cos \theta \right)}$
We can now cancel the term $\left( \cos 3\theta +\cos \theta \right)$ from numerator and denominator to get
$x=\dfrac{\sin 6\theta }{\cos 6\theta }$
We know that $\dfrac{\sin \Phi }{\cos \Phi }=\tan \Phi $ .
Using the above identity, we can write
$x=\tan 6\theta $
So, the correct answer is “Option c”.
Note: Some students, in eagerness, may consider the variable $\theta $ (theta) as 0 (zero). We should clearly note the difference between the two. We can solve this problem directly without rearranging the terms in the first step. But then we have to apply the formula for addition of cosines one more time, which will be a lengthy process.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

