
The value of $\dfrac{\sin 3\theta +\sin 5\theta +\sin 7\theta +\sin 9\theta }{\cos 3\theta +\cos 5\theta +\cos 7\theta +\cos 9\theta }$ is equal to
(a) $\tan 3\theta $
(b) $\cot 3\theta $
(c) $\tan 6\theta $
(d) $\cot 6\theta $
Answer
519.6k+ views
Hint: We should rearrange the terms and group them such that $3\theta $ term comes together with $9\theta $ , and the $5\theta $ term comes together with $7\theta $ . The advantage of this grouping is that we can get our result in a fewer number of steps. We must then use the formula $\sin C+\sin D=\dfrac{1}{2}\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ for addition of sine, and the formula $\cos C+\cos D=\dfrac{1}{2}\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ for addition of cosines. On further simplifying, we can easily get our answer.
Complete step by step solution:
Let us assume a variable $x$ such that $x=\dfrac{\sin 3\theta +\sin 5\theta +\sin 7\theta +\sin 9\theta }{\cos 3\theta +\cos 5\theta +\cos 7\theta +\cos 9\theta }$ .
We can rearrange and group the terms in numerator and denominator and write it as follows,
$x=\dfrac{\left( \sin 3\theta +\sin 9\theta \right)+\left( \sin 5\theta +\sin 7\theta \right)}{\left( \cos 3\theta +\cos 9\theta \right)+\left( \cos 5\theta +\cos 7\theta \right)}...\left( i \right)$
We know about the identity for the addition of sine, which says
$\sin C+\sin D=\dfrac{1}{2}\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
and for the addition of cosines, we have
$\cos C+\cos D=\dfrac{1}{2}\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
We should use these two identities in equation (i) to get,
$x=\dfrac{\left\{ \dfrac{1}{2}\sin \left( \dfrac{3\theta +9\theta }{2} \right)\cos \left( \dfrac{3\theta -9\theta }{2} \right) \right\}+\left\{ \dfrac{1}{2}\sin \left( \dfrac{5\theta +7\theta }{2} \right)\cos \left( \dfrac{5\theta -7\theta }{2} \right) \right\}}{\left\{ \dfrac{1}{2}\cos \left( \dfrac{3\theta +9\theta }{2} \right)\cos \left( \dfrac{3\theta -9\theta }{2} \right) \right\}+\left\{ \dfrac{1}{2}\cos \left( \dfrac{5\theta +7\theta }{2} \right)\cos \left( \dfrac{5\theta -7\theta }{2} \right) \right\}}$
Cancelling $\dfrac{1}{2}$ from each term and evaluating the equation further, we get the following simplified version,
$x=\dfrac{\sin 6\theta \cos \left( -3\theta \right)+\sin 6\theta \cos \left( -\theta \right)}{\cos 6\theta \cos \left( -3\theta \right)+\cos 6\theta \cos \left( -\theta \right)}$
We all know that for any angle,$\cos \left( -\Phi \right)=\cos \Phi $ .
We can use the above point to further simplify our equation,
$x=\dfrac{\sin 6\theta \cos 3\theta +\sin 6\theta \cos \theta }{\cos 6\theta \cos 3\theta +\cos 6\theta \cos \theta }$
Now, taking $\sin 6\theta $ as common from the numerator, and $\cos 6\theta $ as common from the denominator, we get the following
$x=\dfrac{\sin 6\theta \left( \cos 3\theta +\cos \theta \right)}{\cos 6\theta \left( \cos 3\theta +\cos \theta \right)}$
We can now cancel the term $\left( \cos 3\theta +\cos \theta \right)$ from numerator and denominator to get
$x=\dfrac{\sin 6\theta }{\cos 6\theta }$
We know that $\dfrac{\sin \Phi }{\cos \Phi }=\tan \Phi $ .
Using the above identity, we can write
$x=\tan 6\theta $
So, the correct answer is “Option c”.
Note: Some students, in eagerness, may consider the variable $\theta $ (theta) as 0 (zero). We should clearly note the difference between the two. We can solve this problem directly without rearranging the terms in the first step. But then we have to apply the formula for addition of cosines one more time, which will be a lengthy process.
Complete step by step solution:
Let us assume a variable $x$ such that $x=\dfrac{\sin 3\theta +\sin 5\theta +\sin 7\theta +\sin 9\theta }{\cos 3\theta +\cos 5\theta +\cos 7\theta +\cos 9\theta }$ .
We can rearrange and group the terms in numerator and denominator and write it as follows,
$x=\dfrac{\left( \sin 3\theta +\sin 9\theta \right)+\left( \sin 5\theta +\sin 7\theta \right)}{\left( \cos 3\theta +\cos 9\theta \right)+\left( \cos 5\theta +\cos 7\theta \right)}...\left( i \right)$
We know about the identity for the addition of sine, which says
$\sin C+\sin D=\dfrac{1}{2}\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
and for the addition of cosines, we have
$\cos C+\cos D=\dfrac{1}{2}\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
We should use these two identities in equation (i) to get,
$x=\dfrac{\left\{ \dfrac{1}{2}\sin \left( \dfrac{3\theta +9\theta }{2} \right)\cos \left( \dfrac{3\theta -9\theta }{2} \right) \right\}+\left\{ \dfrac{1}{2}\sin \left( \dfrac{5\theta +7\theta }{2} \right)\cos \left( \dfrac{5\theta -7\theta }{2} \right) \right\}}{\left\{ \dfrac{1}{2}\cos \left( \dfrac{3\theta +9\theta }{2} \right)\cos \left( \dfrac{3\theta -9\theta }{2} \right) \right\}+\left\{ \dfrac{1}{2}\cos \left( \dfrac{5\theta +7\theta }{2} \right)\cos \left( \dfrac{5\theta -7\theta }{2} \right) \right\}}$
Cancelling $\dfrac{1}{2}$ from each term and evaluating the equation further, we get the following simplified version,
$x=\dfrac{\sin 6\theta \cos \left( -3\theta \right)+\sin 6\theta \cos \left( -\theta \right)}{\cos 6\theta \cos \left( -3\theta \right)+\cos 6\theta \cos \left( -\theta \right)}$
We all know that for any angle,$\cos \left( -\Phi \right)=\cos \Phi $ .
We can use the above point to further simplify our equation,
$x=\dfrac{\sin 6\theta \cos 3\theta +\sin 6\theta \cos \theta }{\cos 6\theta \cos 3\theta +\cos 6\theta \cos \theta }$
Now, taking $\sin 6\theta $ as common from the numerator, and $\cos 6\theta $ as common from the denominator, we get the following
$x=\dfrac{\sin 6\theta \left( \cos 3\theta +\cos \theta \right)}{\cos 6\theta \left( \cos 3\theta +\cos \theta \right)}$
We can now cancel the term $\left( \cos 3\theta +\cos \theta \right)$ from numerator and denominator to get
$x=\dfrac{\sin 6\theta }{\cos 6\theta }$
We know that $\dfrac{\sin \Phi }{\cos \Phi }=\tan \Phi $ .
Using the above identity, we can write
$x=\tan 6\theta $
So, the correct answer is “Option c”.
Note: Some students, in eagerness, may consider the variable $\theta $ (theta) as 0 (zero). We should clearly note the difference between the two. We can solve this problem directly without rearranging the terms in the first step. But then we have to apply the formula for addition of cosines one more time, which will be a lengthy process.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

